Review of Recent Methodological Developments in Group-Randomized Trials: Part 2-Analysis

Elizabeth L Turner, Melanie Prague, John A Gallis, Fan Li, David M Murray, Elizabeth L Turner, Melanie Prague, John A Gallis, Fan Li, David M Murray

Abstract

In 2004, Murray et al. reviewed methodological developments in the design and analysis of group-randomized trials (GRTs). We have updated that review with developments in analysis of the past 13 years, with a companion article to focus on developments in design. We discuss developments in the topics of the earlier review (e.g., methods for parallel-arm GRTs, individually randomized group-treatment trials, and missing data) and in new topics, including methods to account for multiple-level clustering and alternative estimation methods (e.g., augmented generalized estimating equations, targeted maximum likelihood, and quadratic inference functions). In addition, we describe developments in analysis of alternative group designs (including stepped-wedge GRTs, network-randomized trials, and pseudocluster randomized trials), which require clustering to be accounted for in their design and analysis.

References

    1. Murray DM. Design and Analysis of Group-Randomized Trials. New York, NY: Oxford University Press; 1998.
    1. Hayes RJ, Moulton LH. Cluster Randomised Trials. Boca Raton, FL: CRC Press; 2009.
    1. Donner A, Klar N. Design and Analysis of Cluster Randomization Trials in Health Research. London, England: Arnold; 2000.
    1. Eldridge S, Kerry S. A Practical Guide to Cluster Randomised Trials in Health Services Research. Vol. 120. New York, NY: John Wiley & Sons Inc; 2012.
    1. Campbell MJ, Walters SJ. How to Design, Analyse and Report Cluster Randomised Trials in Medicine and Health Related Research. Chichester, England: John Wiley & Sons Inc; 2014.
    1. Fiero MH, Huang S, Oren E, Bell ML. Statistical analysis and handling of missing data in cluster randomized trials: a systematic review. Trials. 2016;17(1):72.
    1. Murray DM, Varnell SP, Blitstein JL. Design and analysis of group-randomized trials: a review of recent methodological developments. Am J Public Health. 2004;94(3):423–432.
    1. Turner EL, Li F, Gallis JA, Prague M, Murray DM. Review of recent methodological developments in group-randomized trials: part 1—design. Am J Public Health. 2017;107(6):907–915.
    1. Rutterford C, Copas A, Eldridge S. Methods for sample size determination in cluster randomized trials. Int J Epidemiol. 2015;44(3):1051–1067.
    1. Jo B, Asparouhov T, Muthén BO. Intention-to-treat analysis in cluster randomized trials with noncompliance. Stat Med. 2008;27(27):5565.
    1. Raab GM, Butcher I. Balance in cluster randomized trials. Stat Med. 2001;20(3):351–365.
    1. Varnell SP, Murray DM, Janega JB, Blitstein JL. Design and analysis of group-randomized trials: a review of recent practices. Am J Public Health. 2004;94(3):393–399.
    1. Murray DM, Pals SP, Blitstein JL, Alfano CM, Lehman J. Design and analysis of group-randomized trials in cancer: a review of current practices. J Natl Cancer Inst. 2008;100(7):483–491.
    1. Ivers NM, Halperin IJ, Barnsley J et al. Allocation techniques for balance at baseline in cluster randomized trials: a methodological review. Trials. 2012;13:120.
    1. Fiero M, Huang S, Bell ML. Statistical analysis and handling of missing data in cluster randomised trials: protocol for a systematic review. BMJ Open. 2015;5(5):e007378.
    1. Diehr P, Martin DC, Koepsell T, Cheadle A. Breaking the matches in a paired t-test for community interventions when the number of pairs is small. Stat Med. 1995;14(13):1491–1504.
    1. Proschan MA. On the distribution of the unpaired t-statistic with paired data. Stat Med. 1996;15(10):1059–1063.
    1. Donner A, Taljaard M, Klar N. The merits of breaking the matches: a cautionary tale. Stat Med. 2007;26(9):2036–2051.
    1. Li F, Lokhnygina Y, Murray DM, Heagerty PJ, DeLong ER. An evaluation of constrained randomization for the design and analysis of group-randomized trials. Stat Med. 2015;35(10):1565–1579.
    1. Liang KY, Zeger SL. Longitudinal data analysis using generalized linear models. Biometrika. 1986;73(1):13–22.
    1. Zeger SL, Liang K-Y. Longitudinal data analysis for discrete and continuous outcomes. Biometrics. 1986;42(1):121–130.
    1. Ritz J, Spiegelman D. Equivalence of conditional and marginal regression models for clustered and longitudinal data. Stat Methods Med Res. 2004;13(4):309–323.
    1. Greenland S. Interpretation and choice of effect measures in epidemiologic analyses. Am J Epidemiol. 1987;125(5):761–768.
    1. Blizzard L, Hosmer W. Parameter estimation and goodness-of-fit in log binomial regression. Biom J. 2006;48(1):5–22.
    1. Williamson T, Eliasziw M, Fick GH. Log-binomial models: exploring failed convergence. Emerg Themes Epidemiol. 2013;10(1):14.
    1. Zou G, Donner A. Extension of the modified Poisson regression model to prospective studies with correlated binary data. Stat Methods Med Res. 2013;22(6):661–670.
    1. Yelland LN, Salter AB, Ryan P. Performance of the modified Poisson regression approach for estimating relative risks from clustered prospective data. Am J Epidemiol. 2011;174(8):984–992.
    1. Hubbard AE, Ahern J, Fleischer NL et al. To GEE or not to GEE: comparing population average and mixed models for estimating the associations between neighborhood risk factors and health. Epidemiology. 2010;21(4):467–474.
    1. Huang X. Diagnosis of random-effect model misspecification in generalized linear mixed models for binary response. Biometrics. 2009;65(2):361–368.
    1. Murray DM, Hannan PJ, Varnell SP, McCowen RG, Baker WL, Blitstein JL. A comparison of permutation and mixed-model regression methods for the analysis of simulated data in the context of a group-randomized trial. Stat Med. 2006;25(3):375–388.
    1. Fu D. A Comparison Study of General Linear Mixed Model and Permutation Tests in Group-Randomized Trials Under Non-Normal Error Distributions [dissertation] Memphis, TN: University of Memphis; 2006.
    1. Kenward MG, Roger JH. Small sample inference for fixed effects from restricted maximum likelihood. Biometrics. 1997;53(3):983–997.
    1. Localio AR, Berlin JA, Have TRT. Longitudinal and repeated cross-sectional cluster-randomization designs using mixed effects regression for binary outcomes: bias and coverage of frequentist and Bayesian methods. Stat Med. 2006;25(16):2720–2736.
    1. Pinheiro JC, Bates DM. Mixed-Effects Models in S and S-PLUS. New York, NY: Springer; 2000.
    1. Li P, Redden DT. Comparing denominator degrees of freedom approximations for the generalized linear mixed model in analyzing binary outcome in small sample cluster-randomized trials. BMC Med Res Methodol. 2015;15(1):38.
    1. Murray DM, Hannan PJ, Wolfinger RD, Baker WL, Dwyer JH. Analysis of data from group-randomized trials with repeat observations on the same groups. Stat Med. 1998;17(14):1581–1600.
    1. Johnson JL, Kreidler SM, Catellier DJ, Murray DM, Muller KE, Glueck DH. Recommendations for choosing an analysis method that controls Type I error for unbalanced cluster sample designs with Gaussian outcomes. Stat Med. 2015;34(27):3531–3545.
    1. McNeish D, Stapleton LM. Modeling clustered data with very few clusters. Multivariate Behav Res. 2016;51(4):495–518.
    1. Li P, Redden DT. Small sample performance of bias-corrected sandwich estimators for cluster-randomized trials with binary outcomes. Stat Med. 2015;34(2):281–296.
    1. Fay MP, Graubard BI. Small-sample adjustments for Wald-type tests using sandwich estimators. Biometrics. 2001;57(4):1198–1206.
    1. Mancl LA, DeRouen TA. A covariance estimator for GEE with improved small-sample properties. Biometrics. 2001;57(1):126–134.
    1. Morel J, Bokossa M, Neerchal N. Small sample correction for the variance of GEE estimators. Biom J. 2003;45(4):395–409.
    1. Preisser JS, Lu B, Qaqish BF. Finite sample adjustments in estimating equations and covariance estimators for intracluster correlations. Stat Med. 2008;27(27):5764–5785.
    1. Pan W, Wall MM. Small-sample adjustments in using the sandwich variance estimator in generalized estimating equations. Stat Med. 2002;21(10):1429–1441.
    1. Carey V, Zeger SL, Diggle P. Modelling multivariate binary data with alternating logistic regressions. Biometrika. 1993;80(3):517–526.
    1. By K, Qaqish BF, Preisser JS, Perin J, Zink RC. ORTH: R and SAS software for regression models of correlated binary data based on orthogonalized residuals and alternating logistic regressions. Comput Methods Programs Biomed. 2014;113(2):557–568.
    1. Halekoh U, Højsgaard S, Yan J. The R package geepack for generalized estimating equations. J Stat Softw. 2006;15(2):1–11.
    1. Crespi CM, Wong WK, Mishra SI. Using second-order generalized estimating equations to model heterogeneous intraclass correlation in cluster-randomized trials. Stat Med. 2009;28(5):814–827.
    1. Teerenstra S, Lu B, Preisser JS, van Achterberg T, Borm GF. Sample size considerations for GEE analyses of three-level cluster randomized trials. Biometrics. 2010;66(4):1230–1237.
    1. Williamson JM, Datta S, Satten GA. Marginal analyses of clustered data when cluster size is informative. Biometrics. 2003;59(1):36–42.
    1. Hoffman EB, Sen PK, Weinberg CR. Within-cluster resampling. Biometrika. 2001;88(4):1121–1134.
    1. Neuhaus JM, Kalbfleisch JD, Hauck WW. A comparison of cluster-specific and population-averaged approaches for analyzing correlated binary data. Int Stat Rev. 1991;59(1):25–35.
    1. Hin L-Y, Carey VJ, Wang Y-G. Criteria for working-correlation-structure selection in GEE: assessment via simulation. Am Stat. 2007;61(4):360–364.
    1. Tsiatis AA, Davidian M, Zhang M, Lu X. Covariate adjustment for two-sample treatment comparisons in randomized clinical trials: a principled yet flexible approach. Stat Med. 2008;27(23):4658–4677.
    1. Stephens AJ, Tchetgen Tchetgen EJ, Gruttola VD. Augmented generalized estimating equations for improving efficiency and validity of estimation in cluster randomized trials by leveraging cluster-level and individual-level covariates. Stat Med. 2012;31(10):915–930.
    1. Richiardi L, Bellocco R, Zugna D. Mediation analysis in epidemiology: methods, interpretation and bias. Int J Epidemiol. 2013;42(5):1511–1519.
    1. Robins JM, Rotnitzky A, Zhao LP. Analysis of semiparametric regression models for repeated outcomes in the presence of missing data. J Am Stat Assoc. 1995;90(429):106–121.
    1. Robins JM, Greenland S, Hu F-C. Estimation of the causal effect of a time-varying exposure on the marginal mean of a repeated binary outcome. J Am Stat Assoc. 1999;94(447):687–700.
    1. Miglioretti DL, Heagerty PJ. Marginal modeling of multilevel binary data with time-varying covariates. Biostatistics. 2004;5(3):381–398.
    1. Song PXK, Jiang Z, Park E, Qu A. Quadratic inference functions in marginal models for longitudinal data. Stat Med. 2009;28(29):3683–3696.
    1. Khajeh-Kazemi R, Golestan B, Mohammad K, Mahmoudi M, Nedjat S, Pakravan M. Comparison of generalized estimating equations and quadratic inference functions in superior versus inferior Ahmed glaucoma valve implantation. J Res Med Sci. 2011;16(3):235–244.
    1. Westgate PM, Braun TM. The effect of cluster size imbalance and covariates on the estimation performance of quadratic inference functions. Stat Med. 2012;31(20):2209–2222.
    1. Westgate PM. A bias-corrected covariance estimate for improved inference with quadratic inference functions. Stat Med. 2012;31(29):4003–4022.
    1. Westgate PM. A covariance correction that accounts for correlation estimation to improve finite-sample inference with generalized estimating equations: a study on its applicability with structured correlation matrices. J Stat Comput Simul. 2016;86(10):1891–1900.
    1. Westgate PM. Criterion for the simultaneous selection of a working correlation structure and either generalized estimating equations or the quadratic inference function approach. Biom J. 2014;56(3):461–476.
    1. Asgari F, Biglarian A, Seifi B, Bakhshi A, Miri HH, Bakhshi E. Using quadratic inference functions to determine the factors associated with obesity: findings from the STEPS Survey in Iran. Ann Epidemiol. 2013;23(9):534–538.
    1. Bakhshi E, Etemad K, Seifi B, Mohammad K, Biglarian A, Koohpayehzadeh J. Changes in obesity odds ratio among Iranian adults since 2000: quadratic inference functions method. Comput Math Methods Med. 2016;5:1–7.
    1. Yang K, Tao L, Mahara G et al. An association of platelet indices with blood pressure in Beijing adults: applying quadratic inference function for a longitudinal study. Medicine (Baltimore) 2016;95(39):e4964.
    1. van der Laan MJ, Robins JM. Unified Methods for Censored Longitudinal Data and Causality. New York, NY: Springer; 2003.
    1. Gruber S, van der Laan MJ. A targeted maximum likelihood estimator of a causal effect on a bounded continuous outcome. Int J Biostat. 2010;6(1):1–18.
    1. Kotwani P, Balzer L, Kwarisiima D et al. Evaluating linkage to care for hypertension after community-based screening in rural Uganda. Trop Med Int Health. 2014;19(4):459–468.
    1. Ahern J, Karasek D, Luedtke AR, Bruckner TA, van der Laan MJ. Racial/ethnic differences in the role of childhood adversities for mental disorders among a nationally representative sample of adolescents. Epidemiology. 2016;27(5):697–704.
    1. Balzer LB, Petersen ML, van der Laan MJ. Targeted estimation and inference for the sample average treatment effect in trials with and without pair-matching. Stat Med. 2016;35(21):3717–3732.
    1. Schnitzer ME, van der Laan MJ, Moodie EE, Platt RW. Effect of breastfeeding on gastrointestinal infection in infants: a targeted maximum likelihood approach for clustered longitudinal data. Ann Appl Stat. 2014;8(2):703–725.
    1. van der Laan MJ, Polley EC, Hubbard AE. Super learner. Stat Appl Genet Mol Biol. 2007;6:1.
    1. Gail MH, Mark SD, Carroll RJ, Green SB, Pee D. On design considerations and randomization-based inference for community intervention trials. Stat Med. 1996;15(11):1069–1092.
    1. Hemming K, Haines TP, Chilton PJ, Girling AJ, Lilford RJ. The stepped wedge cluster randomised trial: rationale, design, analysis, and reporting. BMJ. 2015;350:h391.
    1. Spiegelman D. Evaluating public health interventions: 2. Stepping up to routine public health evaluation with the stepped wedge design. Am J Public Health. 2016;106(3):453–457.
    1. Davey C, Hargreaves J, Thompson JA et al. Analysis and reporting of stepped wedge randomised controlled trials: synthesis and critical appraisal of published studies, 2010 to 2014. Trials. 2015;16(1):358.
    1. Mdege ND, Man M-S, Taylor CA, Torgerson DJ. Systematic review of stepped wedge cluster randomized trials shows that design is particularly used to evaluate interventions during routine implementation. J Clin Epidemiol. 2011;64(9):936–948.
    1. Copas AJ, Lewis JJ, Thompson JA, Davey C, Baio G, Hargreaves JR. Designing a stepped wedge trial: three main designs, carry-over effects and randomisation approaches. Trials. 2015;16(1):352.
    1. Harling G, Wang R, Onnela J, De Gruttola V. Leveraging contact network structure in the design of cluster randomized trials. Clin Trials. 2017;14(1):37–47.
    1. Ebola ça Suffit Ring Vaccination Trial Consortium. The ring vaccination trial: a novel cluster randomised controlled trial design to evaluate vaccine efficacy and effectiveness during outbreaks, with special reference to Ebola. BMJ. 2015;351:h3740.
    1. Latkin C, Donnell D, Liu TY, Davey-Rothwell M, Celentano D, Metzger D. The dynamic relationship between social norms and behaviors: the results of an HIV prevention network intervention for injection drug users. Addiction. 2013;108(5):934–943.
    1. Banerjee A, Chandrasekhar AG, Duflo E, Jackson MO. The diffusion of microfinance. Science. 2013;341(6144):1236498.
    1. Ogburn EL, VanderWeele TJ. Causal diagrams for interference. Stat Sci. 2014;29(4):559–578.
    1. Vanderweele TJ, Tchetgen EJT, Halloran ME. Components of the indirect effect in vaccine trials: identification of contagion and infectiousness effects. Epidemiology. 2012;23(5):751.
    1. Staples P, Prague M, Victor DG, Onnela J-P. Leveraging contact network information in clustered randomized trials of infectious processes. Available at: . Accessed February 26, 2017.
    1. Teerenstra S, Moerbeek M, Melis RJ, Borm GF. A comparison of methods to analyse continuous data from pseudo cluster randomized trials. Stat Med. 2007;26(22):4100–4115.
    1. Baldwin SA, Bauer DJ, Stice E, Rohde P. Evaluating models for partially clustered designs. Psychol Methods. 2011;16(2):149–165.
    1. Satterthwaite FE. An approximate distribution of estimates of variance components. Biometrics. 1946;2(6):110–114.
    1. Pals S, Murray DM, Alfano CM, Shadish WR, Hannan PJ, Baker WL. Individually randomized group treatment trials: a critical appraisal of frequently used design and analytic approaches. Am J Public Health. 2008;98(8):1418–1424.
    1. Roberts C, Roberts SA. Design and analysis of clinical trials with clustering effects due to treatment. Clin Trials. 2005;2(2):152–162.
    1. Roberts C, Walwyn R. Design and analysis of non-pharmacological treatment trials with multiple therapists per patient. Stat Med. 2013;32(1):81–98.
    1. Andridge RR, Shoben AB, Muller KE, Murray DM. Analytic methods for individually randomized group treatment trials and group-randomized trials when subjects belong to multiple groups. Stat Med. 2014;33(13):2178–2190.
    1. Díaz-Ordaz K, Kenward MG, Cohen A, Coleman CL, Eldridge S. Are missing data adequately handled in cluster randomised trials? A systematic review and guidelines. Clin Trials. 2014;11(5):590–600.
    1. DeSouza CM, Legedza AT, Sankoh AJ. An overview of practical approaches for handling missing data in clinical trials. J Biopharm Stat. 2009;19(6):1055–1073.
    1. Hossain A, Diaz-Ordaz K, Bartlett JW. Missing continuous outcomes under covariate dependent missingness in cluster randomised trials. Stat Methods Med Res. 2016 Epub ahead of print.
    1. Seaman SR, White IR. Review of inverse probability weighting for dealing with missing data. Stat Methods Med Res. 2013;22(3):278–295.
    1. Vansteelandt S, Rotnitzky A, Robins J. Estimation of regression models for the mean of repeated outcomes under nonignorable nonmonotone nonresponse. Biometrika. 2007;94(4):841–860.
    1. Thabane L, Mbuagbaw L, Zhang S et al. A tutorial on sensitivity analyses in clinical trials: the what, why, when and how. BMC Med Res Methodol. 2013;13(1):92.
    1. Taljaard M, Donner A, Klar N. Imputation strategies for missing continuous outcomes in cluster randomized trials. Biom J. 2008;50(3):329–345.
    1. Ma J, Akhtar-Danesh N, Dolovich L, Thabane L. Imputation strategies for missing binary outcomes in cluster randomized trials. BMC Med Res Methodol. 2011;11(1):18.
    1. Andridge RR. Quantifying the impact of fixed effects modeling of clusters in multiple imputation for cluster randomized trials. Biom J. 2011;53(1):57–74.
    1. Ma J, Raina P, Beyene J, Thabane L. Comparing the performance of different multiple imputation strategies for missing binary outcomes in cluster randomized trials: a simulation study. J Open Access Med Stat. 2012;2:93–103.
    1. Caille A, Leyrat C, Giraudeau B. A comparison of imputation strategies in cluster randomized trials with missing binary outcomes. Stat Methods Med Res. 2016;25(6):2650–2669.
    1. Seaman S, Galati J, Jackson D, Carlin J. What is meant by “missing at random”? Stat Sci. 2013;28(2):257–268.
    1. Belitser SV, Martens EP, Pestman WR, Groenwold RH, Boer A, Klungel OH. Measuring balance and model selection in propensity score methods. Pharmacoepidemiol Drug Saf. 2011;20(11):1115–1129.
    1. Prague M, Wang R, De Gruttola V. CRTgeeDR: An R Package for Doubly Robust Generalized Estimating Equations Estimations in Cluster Randomized Trials with Missing Data. Cambridge, MA: Harvard University; 2016.
    1. Prague M, Wang R, Stephens A, Tchetgen Tchetgen E, DeGruttola V. Accounting for interactions and complex inter-subject dependency in estimating treatment effect in cluster-randomized trials with missing outcomes. Biometrics. 2016;72(4):1066–1077.
    1. Seaman SR, White IR, Copas AJ, Li L. Combining multiple imputation and inverse-probability weighting. Biometrics. 2012;68(1):129–137.
    1. Hansen BB, Bowers J. Covariate balance in simple, stratified and clustered comparative studies. Stat Sci. 2008;23(2):219–236.
    1. Leyrat C, Caille A, Foucher Y, Giraudeau B. Propensity score to detect baseline imbalance in cluster randomized trials: the role of the c-statistic. BMC Med Res Methodol. 2016;16(1):9.
    1. Leon AC, Demirtas H, Li C, Hedeker D. Subject-level matching for imbalance in cluster randomized trials with a small number of clusters. Pharm Stat. 2013;12(5):268–274.
    1. Campbell MK, Elbourne DR, Altman DG. CONSORT statement: extension to cluster randomised trials. BMJ. 2004;328(7441):702–708.
    1. Hutton JL. Are distinctive ethical principles required for cluster randomized controlled trials? Stat Med. 2001;20(3):473–488.
    1. Taljaard M, Chaudhry SH, Brehaut JC et al. Survey of consent practices in cluster randomized trials: improvements are needed in ethical conduct and reporting. Clin Trials. 2014;11(1):60–69.
    1. Sim J, Dawson A. Informed consent and cluster-randomized trials. Am J Public Health. 2012;102(3):480–485.
    1. Weijer C, Grimshaw JM, Eccles MP et al. The Ottawa statement on the ethical design and conduct of cluster randomized trials. PLoS Med. 2012;9(11):e1001346.
    1. van der Graaf R, Koffijberg H, Grobbee DE et al. The ethics of cluster-randomized trials requires further evaluation: a refinement of the Ottawa statement. J Clin Epidemiol. 2015;68(9):1108–1114.
    1. Zeng D, Lin D, Lin X. Semiparametric transformation models with random effects for clustered failure time data. Stat Sin. 2008;18(1):355–377.
    1. Cai T, Cheng S, Wei L. Semiparametric mixed-effects models for clustered failure time data. J Am Stat Assoc. 2002;97(458):514–522.
    1. Zhong Y, Cook RJ. Sample size and robust marginal methods for cluster-randomized trials with censored event times. Stat Med. 2015;34(6):901–923.
    1. Zhan Z, de Bock GH, Wiggers T, Heuvel E. The analysis of terminal endpoint events in stepped wedge designs. Stat Med. 2016;35(24):4413–4426.
    1. Xu Z. Statistical Design and Survival Analysis in Cluster Randomized Trials [dissertation] Ann Arbor, MI: University of Michigan; 2011.
    1. Kramer MS, Martin RM, Sterne JA, Shapiro S, Dahhou M, Platt RW. The double jeopardy of clustered measurement and cluster randomisation. BMJ. 2009;339:b2900.
    1. Cho S-J, Preacher KJ. Measurement error correction formula for cluster-level group differences in cluster randomized and observational studies. Educ Psychol Meas. 2016;76(5):771–786.
    1. Eldridge S, Ashby D, Bennett C, Wakelin M, Feder G. Internal and external validity of cluster randomised trials: systematic review of recent trials. BMJ. 2008;336(7649):876–880.
    1. Caille A, Kerry S, Tavernier E, Leyrat C, Eldridge S, Giraudeau B. Timeline cluster: a graphical tool to identify risk of bias in cluster randomised trials. BMJ. 2016;354:i4291.
    1. Ma J, Thabane L, Kaczorowski J et al. Comparison of Bayesian and classical methods in the analysis of cluster randomized controlled trials with a binary outcome: the Community Hypertension Assessment Trial (CHAT) BMC Med Res Methodol. 2009;9(1):37.
    1. Grieve R, Nixon R, Thompson SG. Bayesian hierarchical models for cost-effectiveness analyses that use data from cluster randomized trials. Med Decis Making. 2010;30(2):163–175.
    1. Clark AB, Bachmann MO. Bayesian methods of analysis for cluster randomized trials with count outcome data. Stat Med. 2010;29(2):199–209.
    1. Gomes M, Ng ES, Grieve R, Nixon R, Carpenter J, Thompson SG. Developing appropriate methods for cost-effectiveness analysis of cluster randomized trials. Med Decis Making. 2012;32(2):350–361.
    1. Diaz-Ordaz K, Kenward M, Gomes M, Grieve R. Multiple imputation methods for bivariate outcomes in cluster randomised trials. Stat Med. 2016;35(20):3482–3496.
    1. Ng ES, Diaz-Ordaz K, Grieve R, Nixon RM, Thompson SG, Carpenter JR. Multilevel models for cost-effectiveness analyses that use cluster randomised trial data: an approach to model choice. Stat Methods Med Res. 2013;25(5):2036–2052.
    1. Diaz-Ordaz K, Kenward MG, Grieve R. Handling missing values in cost effectiveness analyses that use data from cluster randomized trials. J R Stat Soc Ser A Stat Soc. 2014;177(2):457–474.
    1. Hox JJ, Moerbeek M, Kluytmans A, van de Schoot R. Analyzing indirect effects in cluster randomized trials. The effect of estimation method, number of groups and group sizes on accuracy and power. Front Psychol. 2014;5:78.
    1. MacKinnon DP, Fairchild AJ, Fritz MS. Mediation analysis. Annu Rev Psychol. 2007;58:593–614.
    1. Vanderweele TJ, Hong G, Jones SM, Brown JL. Mediation and spillover effects in group-randomized trials: a case study of the 4Rs educational intervention. J Am Stat Assoc. 2013;108(502):469–482.
    1. VanderWeele TJ. A unification of mediation and interaction: a 4-way decomposition. Epidemiology. 2014;25(5):749–761.
    1. Turner RM, White IR, Croudace T. Analysis of cluster randomized cross-over trial data: a comparison of methods. Stat Med. 2007;26(2):274–289.
    1. Forbes AB, Akram M, Picher D, Cooper J, Bellomo R. Cluster randomised crossover trials with binary data and unbalanced cluster sizes: application to studies of near-universal interventions in intensive care. Clin Trials. 2015;12(1):34–44.
    1. Morgan KE, Forbes AB, Keogh RH, Jairath V, Kahan BC. Choosing appropriate analysis methods for cluster randomised cross-over trials with a binary outcome. Stat Med. 2017;36(2):318–333.
    1. Arnup SJ, Forbes AB, Kahan BC, Morgan KE, McKenzie JE. Appropriate statistical methods were infrequently used in cluster-randomized crossover trials. J Clin Epidemiol. 2016;74:40–50.

Source: PubMed

3
Prenumerera