Daratumumab plus bortezomib, cyclophosphamide, and dexamethasone in Asian patients with newly diagnosed AL amyloidosis: subgroup analysis of ANDROMEDA

Kenshi Suzuki, Ashutosh D Wechalekar, Kihyun Kim, Chihiro Shimazaki, Jin Seok Kim, Takayuki Ikezoe, Chang-Ki Min, Fude Zhou, Zhen Cai, Xiaonong Chen, Shinsuke Iida, Nagaaki Katoh, Tomoaki Fujisaki, Ho-Jin Shin, NamPhuong Tran, Xiang Qin, Sandra Y Vasey, Brenda Tromp, Brendan M Weiss, Raymond L Comenzo, Efstathios Kastritis, Jin Lu, Kenshi Suzuki, Ashutosh D Wechalekar, Kihyun Kim, Chihiro Shimazaki, Jin Seok Kim, Takayuki Ikezoe, Chang-Ki Min, Fude Zhou, Zhen Cai, Xiaonong Chen, Shinsuke Iida, Nagaaki Katoh, Tomoaki Fujisaki, Ho-Jin Shin, NamPhuong Tran, Xiang Qin, Sandra Y Vasey, Brenda Tromp, Brendan M Weiss, Raymond L Comenzo, Efstathios Kastritis, Jin Lu

Abstract

Subcutaneous daratumumab plus bortezomib/cyclophosphamide/dexamethasone (VCd; D-VCd) improved outcomes versus VCd for patients with newly diagnosed immunoglobulin light-chain (AL) amyloidosis in the phase 3 ANDROMEDA study. We report a subgroup analysis of Asian patients (Japan; Korea; China) from ANDROMEDA. Among 388 randomized patients, 60 were Asian (D-VCd, n = 29; VCd, n = 31). At a median follow-up of 11.4 months, the overall hematologic complete response rate was higher for D-VCd versus VCd (58.6% vs. 9.7%; odds ratio, 13.2; 95% confidence interval [CI], 3.3-53.7; P < 0.0001). Six-month cardiac and renal response rates were higher with D-VCd versus VCd (cardiac, 46.7% vs. 4.8%; P = 0.0036; renal, 57.1% vs. 37.5%; P = 0.4684). Major organ deterioration progression-free survival (MOD-PFS) and major organ deterioration event-free survival (MOD-EFS) were improved with D-VCd versus VCd (MOD-PFS: hazard ratio [HR], 0.21; 95% CI, 0.06-0.75; P = 0.0079; MOD-EFS: HR, 0.16; 95% CI, 0.05-0.54; P = 0.0007). Twelve deaths occurred (D-VCd, n = 3; VCd, n = 9). Twenty-two patients had baseline serologies indicating prior hepatitis B virus (HBV) exposure; no patient experienced HBV reactivation. Although grade 3/4 cytopenia rates were higher than in the global safety population, the safety profile of D-VCd in Asian patients was generally consistent with the global study population, regardless of body weight. These results support D-VCd use in Asian patients with newly diagnosed AL amyloidosis. ClinicalTrials.gov Identifier: NCT03201965.

Keywords: Asian; Body weight; Daratumumab; Efficacy; Light-chain amyloidosis; Safety.

Conflict of interest statement

KS consulted for and received honoraria and research funding from Celgene and Amgen; consulted for and received honoraria from Takeda and Janssen; received honoraria and research funding from Bristol Myers Squibb; and received honoraria from Ono, Novartis, Sanofi, and AbbVie. ADW received honoraria from and served on a board of directors or advisory committees for Janssen, Takeda, Caelum, and Celgene. KK consulted for and received honoraria and research funding from Bristol Myers Squibb, Takeda, Amgen, Celgene, and Janssen. CS received honoraria from Sanofi, Bristol Myers Squibb, and Janssen. FZ is currently employed by Peking University First Hospital. SI received honoraria and research funding from Sanofi, Bristol Myers Squibb, Daiichi Sankyo, Takeda, Ono, Celgene, and Janssen; and received research funding from Merck, AbbVie, Kyowa Kirin, and Chugai. NK received honoraria from Janssen. NT, SYV, and BT are current employees of Janssen and hold equity in Johnson & Johnson. XQ is a current employee of Janssen. BMW was an employee of Janssen at the time of the study. RLC consulted for and received research funding from Prothena, Janssen, Takeda, and Karyopharm and consulted for Amgen, Sanofi, Unum, and Caelum. EK consulted for and received honoraria and research funding from Janssen and Amgen; consulted for and received honoraria from Genesis and Takeda; was reimbursed by Janssen, Genesis, and Takeda for travel, accommodations, and expenses; and consulted for Pfizer. JSK, TI, C-KM, ZC, XC, TF, H-JS, and JL had no relevant conflicts of interest to disclose.

© 2023. The Author(s).

Figures

Fig. 1
Fig. 1
MOD-PFSa,b of a the global ITT population and b the Asian cohort. MOD-PFS, major organ deterioration progression-free survival; ITT, intent-to-treat; D-VCd, daratumumab subcutaneous plus bortezomib/cyclophosphamide/dexamethasone; VCd, bortezomib/cyclophosphamide/dexamethasone; NE, not estimable; HR, hazard ratio; CI, confidence interval; IPCW, inverse probability of censoring weighting. aBecause of the small number of Asian patients, an IPCW analysis method was not applicable to analyze MOD-PFS, and MOD-PFS was based on independent review committee assessment after adjusting for dependent censoring due to subsequent non-cross-resistant anti-plasma cell therapy. MOD-PFS was defined as the time from randomization to any of the following events (whichever occurred first): death, clinical manifestation of cardiac or renal failure, or hematologic progression. bEvaluated in the ITT population, which included all randomized patients
Fig. 2
Fig. 2
MOD-EFSa,b of a the global ITT population and b the Asian cohort. MOD-EFS, major organ deterioration event-free survival; ITT, intent-to-treat; D-VCd, daratumumab subcutaneous plus bortezomib/cyclophosphamide/dexamethasone; VCd, bortezomib/cyclophosphamide/dexamethasone; NE, not estimable; HR, hazard ratio; CI, confidence interval; IPCW, inverse probability of censoring weighting. aBecause of the small number of Asian patients, an IPCW analysis method was not applicable to analyze MOD-EFS, and MOD-EFS was based on independent review committee assessment after adjusting for dependent censoring due to subsequent non-cross-resistant anti-plasma cell therapy. MOD-EFS was defined as hematologic progression, end-stage cardiac or renal disease, initiation of subsequent non-cross-resistant anti-plasma cell therapy, or death, whichever came first. bEvaluated in the ITT population, which included all randomized patients

References

    1. Merlini G, Dispenzieri A, Sanchorawala V, Schonland SO, Palladini G, Hawkins PN, Gertz MA. Systemic immunoglobulin light chain amyloidosis. Nat Rev Dis Primers. 2018;4:38. doi: 10.1038/s41572-018-0034-3.
    1. Kastritis E, Leleu X, Arnulf B, Zamagni E, Cibeira MT, Kwok F, Mollee P, Hajek R, Moreau P, Jaccard A, Schonland SO, Filshie R, Nicolas-Virelizier E, Augustson B, Mateos MV, Wechalekar A, Hachulla E, Milani P, Dimopoulos MA, Fermand JP, Foli A, Gavriatopoulou M, Klersy C, Palumbo A, Sonneveld P, Johnsen HE, Merlini G, Palladini G. Bortezomib, melphalan, and dexamethasone for light-chain amyloidosis. J Clin Oncol. 2020;38:3252–3260. doi: 10.1200/JCO.20.01285.
    1. Palladini G, Sachchithanantham S, Milani P, Gillmore J, Foli A, Lachmann H, Basset M, Hawkins P, Merlini G, Wechalekar AD. A European collaborative study of cyclophosphamide, bortezomib, and dexamethasone in upfront treatment of systemic AL amyloidosis. Blood. 2015;126:612–615. doi: 10.1182/blood-2015-01-620302.
    1. Manwani R, Cohen O, Sharpley F, Mahmood S, Sachchithanantham S, Foard D, Lachmann HJ, Quarta C, Fontana M, Gillmore JD, Whelan C, Hawkins PN, Wechalekar AD. A prospective observational study of 915 patients with systemic AL amyloidosis treated with upfront bortezomib. Blood. 2019;134:2271–2280. doi: 10.1182/blood.2019000834.
    1. Huang X, Wang Q, Chen W, Zeng C, Chen Z, Gong D, Zhang H, Liu Z. Induction therapy with bortezomib and dexamethasone followed by autologous stem cell transplantation versus autologous stem cell transplantation alone in the treatment of renal AL amyloidosis: a randomized controlled trial. BMC Med. 2014;12:2. doi: 10.1186/1741-7015-12-2.
    1. Katoh N, Ueno A, Yoshida T, Tazawa KI, Shimojima Y, Gono T, Sekijima Y, Matsuda M, Ikeda SI. Bortezomib-dexamethasone versus high-dose melphalan for Japanese patients with systemic light-chain (AL) amyloidosis: a retrospective single-center study. Int J Hematol. 2017;105:341–348. doi: 10.1007/s12185-016-2128-6.
    1. Shimazaki C, Fuchida S, Suzuki K, Ishida T, Imai H, Sawamura M, Takamatsu H, Abe M, Miyamoto T, Hata H, Yamada M, Ando Y. Phase 1 study of bortezomib in combination with melphalan and dexamethasone in Japanese patients with relapsed AL amyloidosis. Int J Hematol. 2016;103:79–85. doi: 10.1007/s12185-015-1901-2.
    1. Hur JY, Lee KK, Yoon SE, Park S, Cho J, Kim Y, Jeon E, Choi J, Lee G, Kim B, Min JH, Kim JS, Lee JE, Choi JY, Kim SJ, Jang JH, Kim WS, Jung CW, Kim K. Bortezomib-based first line treatment for AL amyloidosis patients who are not candidate for stem cell transplantation. Blood. 2018;132:3256. doi: 10.1182/blood-2018-99-114099.
    1. Shen KN, Zhang CL, Tian Z, Feng J, Wang YN, Sun J, Zhang L, Cao XX, Zhou DB, Li J. Bortezomib-based chemotherapy reduces early mortality and improves outcomes in patients with ultra-high-risk light-chain amyloidosis: a retrospective case control study. Amyloid. 2019;26:66–73. doi: 10.1080/13506129.2019.1594759.
    1. Huang X, Wang Q, Chen W, Ren G, Liu Z. Bortezomib with dexamethasone as first-line treatment for AL amyloidosis with renal involvement. Amyloid. 2016;23:51–57. doi: 10.3109/13506129.2016.1138939.
    1. Shimazaki C, Hata H, Iida S, Ueda M, Katoh N, Sekijima Y, Ikeda S, Yazaki M, Fukushima W, Ando Y. Nationwide survey of 741 patients with systemic amyloid light-chain amyloidosis in Japan. Intern Med. 2018;57:181–187. doi: 10.2169/internalmedicine.9206-17.
    1. Muchtar E, Gertz MA, Kumar SK, Lacy MQ, Dingli D, Buadi FK, Grogan M, Hayman SR, Kapoor P, Leung N, Fonder A, Hobbs M, Hwa YL, Gonsalves W, Warsame R, Kourelis TV, Russell S, Lust JA, Lin Y, Go RS, Zeldenrust S, Kyle RA, Rajkumar SV, Dispenzieri A. Improved outcomes for newly diagnosed AL amyloidosis between 2000 and 2014: cracking the glass ceiling of early death. Blood. 2017;129:2111–2119. doi: 10.1182/blood-2016-11-751628.
    1. de Weers M, Tai YT, van der Veer MS, Bakker JM, Vink T, Jacobs DC, Oomen LA, Peipp M, Valerius T, Slootstra JW, Mutis T, Bleeker WK, Anderson KC, Lokhorst HM, van de Winkel JG, Parren PW. Daratumumab, a novel therapeutic human CD38 monoclonal antibody, induces killing of multiple myeloma and other hematological tumors. J Immunol. 2011;186:1840–1848. doi: 10.4049/jimmunol.1003032.
    1. Overdijk MB, Jansen JH, Nederend M, Lammerts van Bueren JJ, Groen RW, Parren PW, Leusen JH, Boross P. The therapeutic CD38 monoclonal antibody daratumumab induces programmed cell death via Fcγ receptor-mediated cross-linking. J Immunol. 2016;197:807–813. doi: 10.4049/jimmunol.1501351.
    1. Overdijk MB, Verploegen S, Bogels M, van Egmond M, Lammerts van Bueren JJ, Mutis T, Groen RW, Breij E, Martens AC, Bleeker WK, Parren PW. Antibody-mediated phagocytosis contributes to the anti-tumor activity of the therapeutic antibody daratumumab in lymphoma and multiple myeloma. MAbs. 2015;7:311–321. doi: 10.1080/19420862.2015.1007813.
    1. Lammerts van Bueren J, Jakobs D, Kaldenhoven N, Roza M, Hiddingh S, Meesters J, Voorhorst M, Gresnigt E, Wiegman L, Buijsse O, Andringa G, Overdijk MB, Doshi P, Sasser K, de Weers M, Parren PWHI. Direct in vitro comparison of daratumumab with surrogate analogs of CD38 antibodies MOR03087, SAR650984 and Ab79. Blood. 2014;124:3474. doi: 10.1182/blood.V124.21.3474.3474.
    1. Krejcik J, Casneuf T, Nijhof IS, Verbist B, Bald J, Plesner T, Syed K, Liu K, van de Donk NWCJ, Weiss BM, Ahmadi T, Lokhorst HM, Mutis T, Sasser AK. Daratumumab depletes CD38+ immune-regulatory cells, promotes T-cell expansion, and skews T-cell repertoire in multiple myeloma. Blood. 2016;128:384–394. doi: 10.1182/blood-2015-12-687749.
    1. Adams HC, III, Stevenaert F, Krejcik J, Van der Borght K, Smets T, Bald J, Abraham Y, Ceulemans H, Chiu C, Vanhoof G, Usmani SZ, Plesner T, Lonial S, Nijhof I, Lokhorst HM, Mutis T, van de Donk N, Sasser AK, Casneuf T. High-parameter mass cytometry evaluation of relapsed/refractory multiple myeloma patients treated with daratumumab demonstrates immune modulation as a novel mechanism of action. Cytometry A. 2019;95:279–289. doi: 10.1002/cyto.a.23693.
    1. Casneuf T, Adams HC, III, van de Donk N, Abraham Y, Bald J, Vanhoof G, Van der Borght K, Smets T, Foulk B, Nielsen KC, Rusbuldt J, Axel A, Lysaght A, Ceulemans H, Stevenaert F, Usmani SZ, Plesner T, Avet-Loiseau H, Nijhof I, Mutis T, Schecter JM, Chiu C, Bahlis NJ. Deep immune profiling of patients treated with lenalidomide and dexamethasone with or without daratumumab. Leukemia. 2021;35:573–584. doi: 10.1038/s41375-020-0855-4.
    1. DARZALEX® (2022) (daratumumab) injection, for intravenous use [package insert]. Horsham, PA: Janssen Biotech, Inc
    1. DARZALEX FASPRO™ (2022) (daratumumab and hyaluronidase-fihj) [package insert]. Horsham, PA: Janssen Biotech, Inc
    1. European Medicines Agency (2022) Darzalex 20 mg/mL concentrate for solution for infusion. Summary of product characteristics. . Accessed 15 Feb 2023
    1. Fujisaki T, Ishikawa T, Takamatsu H, Suzuki K, Min CK, Lee JH, Wang J, Carson R, Crist W, Qi M, Nagafuji K. Daratumumab plus bortezomib, melphalan, and prednisone in East Asian patients with non-transplant multiple myeloma: subanalysis of the randomized phase 3 ALCYONE trial. Ann Hematol. 2019;98:2805–2814. doi: 10.1007/s00277-019-03794-9.
    1. Suzuki K, Dimopoulos M, Takezako N, Okamoto S, Shinagawa A, Matsumoto M, Kosugi H, Yoon S, Huang S, Qin X, Qi M, Iida S. Daratumumab, lenalidomide, and dexamethasone in East Asian patients with relapsed or refractory multiple myeloma: subgroup analyses of the phase 3 POLLUX study. Blood Cancer J. 2018;8:41. doi: 10.1038/s41408-018-0071-x.
    1. Hou J, Fu W, Bang SM, Huang H, Kim K, Li W, An G, Lee JJ, Cai Z, Jin J, Wang Y, Chim CS, Qi M, Wang J, Lu X, Song Y, Jia B, Yang X, Liu W, Li Y, Zhang R, Wang J. EP1024 Phase 3 study of daratumumab, bortezomib, melphalan, and prednisone (D-VMP) versus bortezomib, melphalan, and prednisone (VMP) in Asian patients with newly diagnosed multiple myeloma (NDMM): OCTANS. HemaSphere. 2021;5:e566. doi: 10.1097/HS9.0000000000000566.
    1. Lu J, Fu W, Li W, Hu J, An G, Wang Y, Fu C, Chen L, Jin J, Cen X, Ge Z, Cai Z, Niu T, Qi M, Sun S, Gai X, Liu W, Liu W, Yang X, Huang X. Daratumumab, bortezomib, and dexamethasone versus bortezomib and dexamethasone in Chinese patients with relapsed or refractory multiple myeloma: phase 3 LEPUS (MMY3009) study. Clin Lymphoma Myeloma Leuk. 2021;21:e699–e709. doi: 10.1016/j.clml.2021.04.012.
    1. Iida S, Ishikawa T, Min CK, Kim K, Yeh SP, Usmani SZ, Mateos MV, Nahi H, Heuck C, Qin X, Parasrampuria DA, Gries KS, Qi M, Bahlis N, Ito S. Subcutaneous daratumumab in Asian patients with heavily pretreated multiple myeloma: subgroup analyses of the noninferiority, phase 3 COLUMBA study. Ann Hematol. 2021;100:1065–1077. doi: 10.1007/s00277-021-04405-2.
    1. Kaufman GP, Schrier SL, Lafayette RA, Arai S, Witteles RM, Liedtke M. Daratumumab yields rapid and deep hematologic responses in patients with heavily pretreated AL amyloidosis. Blood. 2017;130:900–902. doi: 10.1182/blood-2017-01-763599.
    1. Khouri J, Kin A, Thapa B, Reu FJ, Bumma N, Samaras CJ, Liu HD, Karam MA, Reed J, Mathur S, Faiman BM, Devries G, Zonder J, Valent J. Daratumumab proves safe and highly effective in AL amyloidosis. Br J Haematol. 2019;185:342–344. doi: 10.1111/bjh.15455.
    1. Abeykoon JP, Zanwar S, Dispenzieri A, Gertz MA, Leung N, Kourelis T, Gonsalves W, Muchtar E, Dingli D, Lacy MQ, Hayman SR, Buadi F, Warsame R, Kyle RA, Rajkumar V, Kumar S, Kapoor P. Daratumumab-based therapy in patients with heavily-pretreated AL amyloidosis. Leukemia. 2019;33:531–536. doi: 10.1038/s41375-018-0262-2.
    1. Roussel M, Merlini G, Chevret S, Arnulf B, Stoppa AM, Perrot A, Palladini G, Karlin L, Royer B, Huart A, Macro M, Morel P, Frenzel L, Touzeau C, Boyle E, Dorvaux V, Le Bras F, Lavergne D, Bridoux F, Jaccard A. A prospective phase 2 trial of daratumumab in patients with previously treated systemic light-chain amyloidosis. Blood. 2020;135:1531–1540. doi: 10.1182/blood.2019004369.
    1. Sanchorawala V, Sarosiek S, Schulman A, Mistark M, Migre ME, Cruz R, Sloan JM, Brauneis D, Shelton AC. Safety, tolerability, and response rates of daratumumab in relapsed AL amyloidosis: results of a phase 2 study. Blood. 2020;135:1541–1547. doi: 10.1182/blood.2019004436.
    1. Kimmich CR, Terzer T, Benner A, Dittrich T, Veelken K, Carpinteiro A, Hansen T, Goldschmidt H, Seckinger A, Hose D, Jauch A, Worner S, Beimler J, Muller-Tidow C, Hegenbart U, Schonland SO. Daratumumab for systemic AL amyloidosis: prognostic factors and adverse outcome with nephrotic-range albuminuria. Blood. 2020;135:1517–1530. doi: 10.1182/blood.2019003633.
    1. Milani P, Fazio F, Basset M, Berno T, Larocca A, Foli A, Riva M, Benigna F, Oliva S, Nuvolone M, Rodigari L, Petrucci MT, Merlini G, Palladini G. High rate of profound clonal and renal responses with daratumumab treatment in heavily pre-treated patients with light chain (AL) amyloidosis and high bone marrow plasma cell infiltrate. Am J Hematol. 2020;95:900–905. doi: 10.1002/ajh.25828.
    1. Palladini G, Kastritis E, Maurer MS, Zonder JA, Minnema MC, Wechalekar AD, Jaccard A, Lee HC, Bumma N, Kaufman JL, Medvedova E, Kovacsovics TJ, Rosenzweig MA, Sanchorawala V, Qin X, Vasey SY, Weiss B, Vermeulen J, Merlini G, Comenzo RL. Daratumumab plus CyBorD for patients with newly diagnosed AL amyloidosis: safety run-in results of ANDROMEDA. Blood. 2020;136:71–80. doi: 10.1182/blood.2019004460.
    1. Kastritis E, Palladini G, Minnema MC, Wechalekar AD, Jaccard A, Lee HC, Sanchorawala V, Gibbs S, Mollee P, Venner CP, Lu J, Schönland S, Gatt ME, Suzuki K, Kim K, Cibeira MT, Beksac M, Libby E, Valent J, Hungria V, Wong SW, Rosenzweig M, Bumma N, Huart A, Dimopoulos MA, Bhutani D, Waxman AJ, Goodman SA, Zonder JA, Lam S, Song K, Hansen T, Manier S, Roeloffzen W, Jamroziak K, Kwok F, Shimazaki C, Kim JS, Crusoe E, Ahmadi T, Tran NP, Qin X, Vasey SY, Tromp B, Schecter JM, Weiss BM, Zhuang SH, Vermeulen J, Merlini G, Comenzo RL. Daratumumab-based treatment for immunoglobulin light-chain amyloidosis. N Engl J Med. 2021;385:46–58. doi: 10.1056/NEJMoa2028631.
    1. Palladini G, Dispenzieri A, Gertz MA, Kumar S, Wechalekar A, Hawkins PN, Schonland S, Hegenbart U, Comenzo R, Kastritis E, Dimopoulos MA, Jaccard A, Klersy C, Merlini G. New criteria for response to treatment in immunoglobulin light chain amyloidosis based on free light chain measurement and cardiac biomarkers: impact on survival outcomes. J Clin Oncol. 2012;30:4541–4549. doi: 10.1200/JCO.2011.37.7614.
    1. Palladini G, Hegenbart U, Milani P, Kimmich C, Foli A, Ho AD, Vidus Rosin M, Albertini R, Moratti R, Merlini G, Schonland S. A staging system for renal outcome and early markers of renal response to chemotherapy in AL amyloidosis. Blood. 2014;124:2325–2332. doi: 10.1182/blood-2014-04-570010.
    1. Feng J, Zhang C, Shen K, Sun J, Fang Q, Zhang L, Cao X, Zhou D, Li J, Tian Z. Outcome of cardiac light-chain amyloidosis in the era of novel therapy—a single-center cohort study of 227 patients. Circ J. 2019;83:775–782. doi: 10.1253/circj.CJ-18-1048.
    1. Shen KN, Fu WJ, Wu Y, Dong YJ, Huang ZX, Wei YQ, Li CR, Sun CY, Chen Y, Miao HL, Zhang YL, Cao XX, Zhou DB, Li J. Doxycycline combined with bortezomib-cyclophosphamide-dexamethasone chemotherapy for newly diagnosed cardiac light-chain amyloidosis: a multicenter randomized controlled trial. Circulation. 2022;145:8–17. doi: 10.1161/CIRCULATIONAHA.121.055953.
    1. Jimenez Zepeda VH, Duggan P, Neri PE, Bahlis NJ. Cyclophosphamide, bortezomib and dexamethasone (CyBORD) is a feasible and active regimen for non-transplant eligible multiple myeloma patients. Blood. 2014;124:5751. doi: 10.1182/blood.V124.21.5751.5751.
    1. Muchtar E, Dispenzieri A, Leung N, Lacy MQ, Buadi FK, Dingli D, Hayman SR, Kapoor P, Hwa YL, Fonder A, Hobbs M, Gonsalves W, Kourelis TV, Warsame R, Russell SJ, Lust JA, Lin Y, Go RS, Zeldenrust SR, Kyle RA, Rajkumar SV, Kumar SK, Gertz MA. Optimizing deep response assessment for AL amyloidosis using involved free light chain level at end of therapy: failure of the serum free light chain ratio. Leukemia. 2019;33:527–531. doi: 10.1038/s41375-018-0258-y.

Source: PubMed

3
Prenumerera