Phase 3 DREAM-HF Trial of Mesenchymal Precursor Cells in Chronic Heart Failure

Kenneth M Borow, Alex Yaroshinsky, Barry Greenberg, Emerson C Perin, Kenneth M Borow, Alex Yaroshinsky, Barry Greenberg, Emerson C Perin

Abstract

Advanced heart failure (HF) is a progressive disease characterized by recurrent hospitalizations and high risk of mortality. Indeed, outcomes in late stages of HF approximate those seen in patients with various aggressive malignancies. Clinical trials assessing beneficial outcomes of new treatments in patients with cancer have used innovative approaches to measure impact on total disease burden or surrogates to assess treatment efficacy. Although most cardiovascular outcomes trials continue to use time-to-first event analyses to assess the primary efficacy end point, such analyses do not adequately reflect the impact of new treatments on the totality of the chronic disease burden. Consequently, patient enrichment and other strategies for ongoing clinical trial design, as well as new statistical methodologies, are important considerations, particularly when studying a population with advanced chronic HF. The DREAM-HF trial (Double-Blind Randomized Assessment of Clinical Events With Allogeneic Mesenchymal Precursor Cells in Advanced Heart Failure) is an ongoing, randomized, sham-controlled phase 3 study of the efficacy and safety of mesenchymal precursor cells as immunotherapy in patients with advanced chronic HF with reduced ejection fraction. Mesenchymal precursor cells have a unique multimodal mechanism of action that is believed to result in polarization of proinflammatory type 1 macrophages in the heart to an anti-inflammatory type 2 macrophage state, inhibition of maladaptive adverse left ventricular remodeling, reversal of cardiac and peripheral endothelial dysfunction, and recovery of deranged vasculature. The objective of DREAM-HF is to confirm earlier phase 2 results and evaluate whether mesenchymal precursor cells will reduce the rate of nonfatal recurrent HF-related major adverse cardiac events while delaying or preventing progression of HF to terminal cardiac events. DREAM-HF is an example of an ongoing contemporary events-driven cardiovascular cell-based immunotherapy study that has utilized the concepts of baseline disease enrichment, prognostic enrichment, and predictive enrichment to improve its efficiency by using accumulating data from within as well as external to the trial. Adaptive enrichment designs and strategies are important components of a rational approach to achieve clinical research objectives in shorter clinical trial timelines and with increased cost-effectiveness without compromising ethical standards or the overall statistical integrity of the study. The DREAM-HF trial also presents an alternative approach to traditional composite time-to-first event primary efficacy end points. Statistical methodologies such as the joint frailty model provide opportunities to expand the scope of events-driven HF with reduced ejection fraction clinical trials to utilize time to recurrent nonfatal HF-related major adverse cardiac events as the primary efficacy end point without compromising the integrity of the statistical analyses for terminal cardiac events. In advanced chronic HF with reduced ejection fraction studies, the joint frailty model is utilized to reflect characteristics of the high-risk patient population with important unmet therapeutic needs. In some cases, use of the joint frailty model may substantially reduce sample size requirements. In addition, using an end point that is acceptable to the Food and Drug Administration and the European Medicines Agency, such as recurrent nonfatal HF-related major adverse cardiac events, enables generation of clinically relevant pharmacoeconomic data while providing comprehensive views of the patient's overall cardiovascular disease burden. The major goal of this review is to provide lessons learned from the ongoing DREAM-HF trial that relate to biologic plausibility and flexible clinical trial design and are potentially applicable to other development programs of innovative therapies for patients with advanced cardiovascular disease. Clinical Trial Registration: URL: https://www.clinicaltrials.gov. Unique identifier: NCT02032004.

Keywords: clinical trial; goals; heart failure; humans; immunotherapy; inflammation.

Figures

Figure 1.
Figure 1.
Relationships between multiple key factors that affect progression of heart failure with reduced ejection fraction (HFrEF) severity.
Figure 2.
Figure 2.
Proposed key components of the mesenchymal precursor cell mechanisms of action in chronic heart failure (HF). Ang-1 indicates angiopoietin-1; FGF2, fibroblast growth factor 2; IDO, indoleamine dioxygenase; IL, interleukin; M1, macrophage (type 1); M2, macrophage (type 2); MPC, mesenchymal precursor cell; NF-κB, nuclear factor κB; PDGF, platelet-derived growth factor; PGE2, prostaglandin E2; SDF-1, stromal cell-derived factor-1; TNF-α, tumor necrosis factor-α; and VEGF, vascular endothelial growth factor.
Figure 3.
Figure 3.
Phase 2 randomized dose-finding sham-controlled trial in New York Heart Association class II/III heart failure with reduced ejection fraction patients.A, The 150-million mesenchymal precursor cell group (MPC-150M) showed durable (36 mo) protection against heart failure–related major adverse cardiac events (HF-MACE) following single intracardiac injection. Left, All MPC-150M and control subjects.Right, MPC-150M and control subjects enriched for baseline left ventricular end-systolic volume (LVESV) >100 mL.B, Therapeutic benefit of MPCs on left ventricular remodeling at 6 mo enhanced in subjects with baseline LVESV >100 mL. LVEDV indicates left ventricular end-diastolic volume; and MPC, mesenchymal precursor cells.
Figure 4.
Figure 4.
Illustrative example of recurrent events analysis for assessment of patients’ comprehensive healthcare journey. HF indicates heart failure; HF-MACE, heart failure–related major adverse cardiac events; TTFE, time-to-first event; and VF, ventricular fibrillation.

References

    1. Butler J, Fonarow GC, Gheorghiade M. Strategies and opportunities for drug development in heart failure. JAMA. 2013;309:1593–1594. doi: 10.1001/jama.2013.1063.
    1. McMurray JJ, Packer M, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, Rouleau JL, Shi VC, Solomon SD, Swedberg K, Zile MR PARADIGM-HF Investigators and Committees. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med. 2014;371:993–1004. doi: 10.1056/NEJMoa1409077.
    1. Swedberg K, Komajda M, Böhm M, Borer JS, Ford I, Dubost-Brama A, Lerebours G, Tavazzi L SHIFT Investigators. Ivabradine and outcomes in chronic heart failure (SHIFT): a randomised placebo-controlled study. Lancet. 2010;376:875–885. doi: 10.1016/S0140-6736(10)61198-1.
    1. Temple R. Are surrogate markers adequate to assess cardiovascular disease drugs? JAMA. 1999;282:790–795.
    1. Borow KM, Nelson JR, Mason RP. Biologic plausibility, cellular effects, and molecular mechanisms of eicosapentaenoic acid (EPA) in atherosclerosis. Atherosclerosis. 2015;242:357–366. doi: 10.1016/j.atherosclerosis.2015.07.035.
    1. Ibrahim NE, Januzzi JL., Jr. Established and emerging roles of biomarkers in heart failure. Circ Res. 2018;123:614–629. doi: 10.1161/CIRCRESAHA.118.312706.
    1. Thygesen LC, Andersen GS, Andersen H. A philosophical analysis of the Hill criteria. J Epidemiol Community Health. 2005;59:512–516. doi: 10.1136/jech.2004.027524.
    1. Novella S. Plausibility in Science-Based Medicine. . Accessed June 25, 2019.
    1. Bothwell LE, Avorn J, Khan NF, Kesselheim AS. Adaptive design clinical trials: a review of the literature and . BMJ Open. 2018;8:e018320. doi: 10.1136/bmjopen-2017-018320.
    1. Antman EM, Loscalzo J. Precision medicine in cardiology. Nat Rev Cardiol. 2016;13:591–602. doi: 10.1038/nrcardio.2016.101.
    1. U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Center for Biologics Evaluation and Research (CBER) Adaptive Designs for Clinical Trials of Drugs and Biologics Guidance for Industry: Draft Guidance. FDA-2018-D-3124. . Accessed June 25, 2019.
    1. U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Center for Biologics Evaluation and Research (CBER) Enrichment Strategies for Clinical Trials to Support Determination of Effectiveness of Human Drugs and Biologics Products: Guidance for Industry. FDA-2012-D-1145. . Accessed June 25, 2019.
    1. Temple R Enrichment Strategies for Clinical Trials. CDER Enrichment Webinar PPT Presentation. . Accessed June 25, 2019.
    1. U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Center for Biologics Evaluation and Research (CBER), Center for Devices and Radiological Health (CDRH) Guidance for Industry Enrichment Strategies for Clinical Trials to Support Approval of Human Drugs and Biological Products.December 2012
    1. Yancy CW, Jessup M, Bozkurt B, et al. 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. Circulation. 2017;136:e137–e161. doi: 10.1161/CIR.0000000000000509.
    1. Elgendy IY, Mahtta D, Pepine CJ. Medical therapy for heart failure caused by ischemic heart disease. Circ Res. 2019;124:1520–1535. doi: 10.1161/CIRCRESAHA.118.313568.
    1. Jong P, Yusuf S, Rousseau MF, Ahn SA, Bangdiwala SI. Effect of enalapril on 12-year survival and life expectancy in patients with left ventricular systolic dysfunction: a follow-up study. Lancet. 2003;361:1843–1848. doi: 10.1016/S0140-6736(03)13501-5.
    1. Swedberg K, Kjekshus J, Snapinn S. Long-term survival in severe heart failure in patients treated with enalapril. Ten year follow-up of CONSENSUS I. Eur Heart J. 1999;20:136–139. doi: 10.1053/euhj.1998.1098.
    1. Metra M, Eichhorn E, Abraham WT, et al. ESSENTIAL Investigators. Effects of low-dose oral enoximone administration on mortality, morbidity, and exercise capacity in patients with advanced heart failure: the randomized, double-blind, placebo-controlled, parallel group ESSENTIAL trials. Eur Heart J. 2009;30:3015–3026. doi: 10.1093/eurheartj/ehp338.
    1. Moss AJ, Hall WJ, Cannom DS, Klein H, Brown MW, Daubert JP, Estes NA, III, Foster E, Greenberg H, Higgins SL, Pfeffer MA, Solomon SD, Wilber D, Zareba W MADIT-CRT Trial Investigators. Cardiac-resynchronization therapy for the prevention of heart-failure events. N Engl J Med. 2009;361:1329–1338. doi: 10.1056/NEJMoa0906431.
    1. Mathias A, Moss AJ, McNitt S, Zareba W, Goldenberg I, Solomon SD, Kutyifa V. Clinical implications of complete left-sided reverse remodeling with cardiac resynchronization therapy: a MADIT-CRT substudy. J Am Coll Cardiol. 2016;68:1268–1276. doi: 10.1016/j.jacc.2016.06.051.
    1. Birks EJ. Intermediate- and Long-Term Mechanical Circulatory Support. Wolters Kluwer Health-UpToDate; 2017.
    1. Gustafsson F, Rogers JG. Left ventricular assist device therapy in advanced heart failure: patient selection and outcomes. Eur J Heart Fail. 2017;19:595–602. doi: 10.1002/ejhf.779.
    1. Pinney SP, Anyanwu AC, Lala A, Teuteberg JJ, Uriel N, Mehra MR. Left ventricular assist devices for lifelong support. J Am Coll Cardiol. 2017;69:2845–2861. doi: 10.1016/j.jacc.2017.04.031.
    1. Yancy CW, Jessup M, Bozkurt B, et al. 2016 ACC/AHA/HFSA focused update on new pharmacological therapy for heart failure: an update of the 2013 ACCF/AHA guideline for the management of heart failure. J Cardiac Failure. 2016;22:659–669.
    1. 24 Important Heart Transplant Waiting List Statistics. Health Research Funding website. . Accessed June 25, 2019.
    1. Colvin M, Smith JM, Hadley N, Skeans MA, Carrico R, Uccellini K, Lehman R, Robinson A, Israni AK, Synder JJ, Kasiske BL. OPTN/SRTR 2017 annual data report: heart. Am J Transplant. 2019;19(suppl 2):323–403.
    1. Miller L, Birks E, Guglin M, Lamba H, Frazier OH. Use of ventricular assist devices and heart transplantation for advanced heart failure. Circ Res. 2019;124:1658–1678. doi: 10.1161/CIRCRESAHA.119.313574.
    1. Mehra MR, Uriel N, Naka Y, et al. MOMENTUM 3 Investigators. A fully magnetically levitated left ventricular assist device - final report. N Engl J Med. 2019;380:1618–1627. doi: 10.1056/NEJMoa1900486.
    1. Mehra MR, Naka Y, Uriel N, et al. MOMENTUM 3 Investigators. A fully magnetically levitated circulatory pump for advanced heart failure. N Engl J Med. 2017;376:440–450. doi: 10.1056/NEJMoa1610426.
    1. Rogers JG, Pagani FD, Tatooles AJ, et al. Intrapericardial left ventricular assist device for advanced heart failure. N Engl J Med. 2017;376:451–460. doi: 10.1056/NEJMoa1602954.
    1. Benjamin EJ, Virani SS, Callaway CW, et al. American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics-2018 update: a report from the American Heart Association. Circulation. 2018;137:e67–e492. doi: 10.1161/CIR.0000000000000558.
    1. Heidenreich PA, Albert NM, Allen LA, Bluemke DA, Butler J, Fonarow GC, Ikonomidis JS, Khavjou O, Konstam MA, Maddox TM, Nichol G, Pham M, Piña IL, Trogdon JG American Heart Association Advocacy Coordinating Committee; Council on Arteriosclerosis, Thrombosis and Vascular Biology; Council on Cardiovascular Radiology and Intervention; Council on Clinical Cardiology; Council on Epidemiology and Prevention; Stroke Council. Forecasting the impact of heart failure in the United States: a policy statement from the American Heart Association. Circ Heart Fail. 2013;6:606–619. doi: 10.1161/HHF.0b013e318291329a.
    1. Roger VL. Epidemiology of heart failure. Circ Res. 2013;113:646–659. doi: 10.1161/CIRCRESAHA.113.300268.
    1. Voigt J, Sasha John M, Taylor A, Krucoff M, Reynolds MR, Michael Gibson C. A reevaluation of the costs of heart failure and its implications for allocation of health resources in the United States. Clin Cardiol. 2014;37:312–321. doi: 10.1002/clc.22260.
    1. Farmakis D, Stafylas P, Giamouzis G, Maniadakis N, Parissis J. The medical and socioeconomic burden of heart failure: a comparative delineation with cancer. Int J Cardiol. 2016;203:279–281. doi: 10.1016/j.ijcard.2015.10.172.
    1. Faiella W, Atoui R. Therapeutic use of stem cells for cardiovascular disease. Clin Transl Med. 2016;5:34. doi: 10.1186/s40169-016-0116-3.
    1. Willerson JT. The medical and device-related treatment of heart failure. Circ Res. 2019;124:1519. doi: 10.1161/CIRCRESAHA.119.315268.
    1. Pinilla-Vera M, Hahn VS, Kass DA. Leveraging signaling pathways to treat heart failure with reduced ejection fraction. Circ Res. 2019;124:1618–1632. doi: 10.1161/CIRCRESAHA.119.313682.
    1. Briasoulis A, Androulakis E, Christophides T, Tousoulis D. The role of inflammation and cell death in the pathogenesis, progression and treatment of heart failure. Heart Fail Rev. 2016;21:169–176. doi: 10.1007/s10741-016-9533-z.
    1. Westman PC, Lipinski MJ, Luger D, Waksman R, Bonow RO, Wu E, Epstein SE. Inflammation as a driver of adverse left ventricular remodeling after acute myocardial infarction. J Am Coll Cardiol. 2016;67:2050–2060. doi: 10.1016/j.jacc.2016.01.073.
    1. Hulsmans M, Sam F, Nahrendorf M. Monocyte and macrophage contributions to cardiac remodeling. J Mol Cell Cardiol. 2016;93:149–155. doi: 10.1016/j.yjmcc.2015.11.015.
    1. Cordero-Reyes AM, Youker KA, Trevino AR, et al. Full expression of cardiomyopathy is partly dependent on B-cells: a pathway that involves cytokine activation, immunoglobulin deposition, and activation of apoptosis. J Am Heart Assoc. 2016;5:e002484.
    1. Sano S. Prevention and treatment of heart failure based on the control of inflammation. In: Miyasaka M, Takatsu K, editors. In: Chronic Inflammation. Japan, East Asia: Springer; 2016. pp. 685–695. Chapter 52.
    1. Chen B, Frangogiannis NG. Macrophages in the remodeling failing heart. Circ Res. 2016;119:776–778. doi: 10.1161/CIRCRESAHA.116.309624.
    1. Bajpai G, Schneider C, Wong N, Bredemeyer A, Hulsmans M, Nahrendorf M, Epelman S, Kreisel D, Liu Y, Itoh A, Shankar TS, Selzman CH, Drakos SG, Lavine KJ. The human heart contains distinct macrophage subsets with divergent origins and functions. Nat Med. 2018;24:1234–1245. doi: 10.1038/s41591-018-0059-x.
    1. Wu MY, Li CJ, Hou MF, Chu PY. New insights into the role of inflammation in the pathogenesis of atherosclerosis. Int J Med Sci. 2017;18:2034. doi:10,3390/ijms18102034.
    1. Katz SD. Mechanisms and implications of endothelial dysfunction in congestive heart failure. Curr Opin Cardiol. 1997;12:259–264.
    1. Katz SD, Hryniewicz K, Hriljac I, Balidemaj K, Dimayuga C, Hudaihed A, Yasskiy A. Vascular endothelial dysfunction and mortality risk in patients with chronic heart failure. Circulation. 2005;111:310–314. doi: 10.1161/.
    1. Levine, Kalman J, Mayer L, et al. Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. N Engl J Med. 1990;323:236–241.
    1. Milani RV, Mehra MR, Endres S, Eigler A, Cooper ES, Lavie CJ, Jr, Ventura HO. The clinical relevance of circulating tumor necrosis factor-alpha in acute decompensated chronic heart failure without cachexia. Chest. 1996;110:992–995. doi: 10.1378/chest.110.4.992.
    1. Sato Y, Takatsu Y, Kataoka K, Yamada T, Taniguchi R, Sasayama S, Matsumori A. Serial circulating concentrations of C-reactive protein, interleukin (IL)-4, and IL-6 in patients with acute left heart decompensation. Clin Cardiol. 1999;22:811–813. doi: 10.1002/clc.4960221211.
    1. Murray DR, Freeman GL. Proinflammatory cytokines: predictors of a failing heart? Circulation. 2003;107:1460–1462.
    1. Suzuki H, Sato R, Sato T, Shoji M, Iso Y, Kondo T, Shibata M, Koba S, Katagiri T. Time-course of changes in the levels of interleukin 6 in acutely decompensated heart failure. Int J Cardiol. 2005;100:415–420. doi: 10.1016/j.ijcard.2004.08.041.
    1. Mann DL. Innate immunity and the failing heart: the cytokine hypothesis revisited. Circ Res. 2015;116:1254–1268. doi: 10.1161/CIRCRESAHA.116.302317.
    1. Sinagra E, Perricone G, Romano C, Cottone M. Heart failure and anti tumor necrosis factor-alpha in systemic chronic inflammatory diseases. Eur J Intern Med. 2013;24:385–392. doi: 10.1016/j.ejim.2012.12.015.
    1. Shioi T, Matsumori A, Kihara Y, Inoko M, Ono K, Iwanaga Y, Yamada T, Iwasaki A, Matsushima K, Sasayama S. Increased expression of interleukin-1 beta and monocyte chemotactic and activating factor/monocyte chemoattractant protein-1 in the hypertrophied and failing heart with pressure overload. Circ Res. 1997;81:664–671.
    1. Hofmann U, Frantz S. How can we cure a heart “in flame”? A translational view on inflammation in heart failure. Basic Res Cardiol. 2013;108:356. doi: 10.1007/s00395-013-0356-y.
    1. Kleinbongard P, Heusch G, Schulz R. TNFalpha in atherosclerosis, myocardial ischemia/reperfusion and heart failure. Pharmacol Ther. 2010;127:295–314. doi: 10.1016/j.pharmthera.2010.05.002.
    1. Cohen HB, Mosser DM. Cardiac macrophages: how to mend a broken heart. Immunity. 2014;40:3–5. doi: 10.1016/j.immuni.2013.12.005.
    1. Patel B, Bansal SS, Ismahil MA, Hamid T, Rokosh G, Mack M, Prabhu SD. CCR2+ monocyte-derived infiltrating macrophages are required for adverse cardiac remodeling during pressure overload. JACC Basic Transl Sci. 2018;3:230–244. doi: 10.1016/j.jacbts.2017.12.006.
    1. Ascheim DD, Gelijns AC, Goldstein D, et al. Mesenchymal precursor cells as adjunctive therapy in recipients of contemporary left ventricular assist devices. Circulation. 2014;129:2287–2296. doi: 10.1161/CIRCULATIONAHA.113.007412.
    1. Perin EC, Borow KM, Silva GV, DeMaria AN, Marroquin OC, Huang PP, Traverse JH, Krum H, Skerrett D, Zheng Y, Willerson JT, Itescu S, Henry TD. A phase II dose-escalation study of allogeneic mesenchymal precursor cells in patients with ischemic or nonischemic heart failure. Circ Res. 2015;117:576–584. doi: 10.1161/CIRCRESAHA.115.306332.
    1. Packham DK, Fraser IR, Kerr PG, Segal KR. Allogeneic Mesenchymal Precursor Cells (MPC) in diabetic nephropathy: a randomized, placebo-controlled, dose escalation study. EBioMedicine. 2016;12:263–269. doi: 10.1016/j.ebiom.2016.09.011.
    1. Skyler JS, Fonseca VA, Segal KR, Rosenstock J MSB-DM003 Investigators. Allogeneic mesenchymal precursor cells in type 2 diabetes: a randomized, placebo-controlled, dose-escalation safety and tolerability pilot study. Diabetes Care. 2015;38:1742–1749. doi: 10.2337/dc14-2830.
    1. Psaltis PJ, Carbone A, Nelson AJ, Lau DH, Jantzen T, Manavis J, Williams K, Itescu S, Sanders P, Gronthos S, Zannettino AC, Worthley SG. Reparative effects of allogeneic mesenchymal precursor cells delivered transendocardially in experimental nonischemic cardiomyopathy. JACC Cardiovasc Interv. 2010;3:974–983. doi: 10.1016/j.jcin.2010.05.016.
    1. See F, Seki T, Psaltis PJ, Sondermeijer HP, Gronthos S, Zannettino AC, Govaert KM, Schuster MD, Kurlansky PA, Kelly DJ, Krum H, Itescu S. Therapeutic effects of human STRO-3-selected mesenchymal precursor cells and their soluble factors in experimental myocardial ischemia. J Cell Mol Med. 2011;15:2117–2129. doi: 10.1111/j.1582-4934.2010.01241.x.
    1. Martens TP, See F, Schuster MD, Sondermeijer HP, Hefti MM, Zannettino A, Gronthos S, Seki T, Itescu S. Mesenchymal lineage precursor cells induce vascular network formation in ischemic myocardium. Nat Clin Pract Cardiovasc Med. 2006;3(suppl 1):S18–S22. doi: 10.1038/ncpcardio0404.
    1. Houtgraaf JH, de Jong R, Kazemi K, de Groot D, van der Spoel TI, Arslan F, Hoefer I, Pasterkamp G, Itescu S, Zijlstra F, Geleijnse ML, Serruys PW, Duckers HJ. Intracoronary infusion of allogeneic mesenchymal precursor cells directly after experimental acute myocardial infarction reduces infarct size, abrogates adverse remodeling, and improves cardiac function. Circ Res. 2013;113:153–166. doi: 10.1161/CIRCRESAHA.112.300730.
    1. Dooley LM, Abdalmula A, Washington EA, Kaufman C, Tudor EM, Ghosh P, Itescu S, Kimpton WG, Bailey SR. Effect of mesenchymal precursor cells on the systemic inflammatory response and endothelial dysfunction in an ovine model of collagen-induced arthritis. PLoS One. 2015;10:e0124144. doi: 10.1371/journal.pone.0124144.
    1. Abdalmula A, Dooley LM, Kaufman C, Washington EA, House JV, Blacklaws BA, Ghosh P, Itescu S, Bailey SR, Kimpton WG. Immunoselected STRO-3+ mesenchymal precursor cells reduce inflammation and improve clinical outcomes in a large animal model of monoarthritis. Stem Cell Res Ther. 2017;8:22. doi: 10.1186/s13287-016-0460-7.
    1. Pagani F. Intramyocardial injection of mesenchymal precursor cells in left ventricular assist device recipients: the LVAD MPC-II trial.. Paper presented at: AHA 2018; November 11, 2018; Chicago, IL.
    1. Perin EC, Borow KM, Golden L, Marroquin OC, Huang PP, Traverse JH, Itescu S, Henry TD. Cardioprotective effects of mesenchymal precursor cells in patients with advanced chronic heart failure due to left ventricular systolic dysfunction. J Cardiac Failure. 2015;21:S107.
    1. Mann DL, Bogaev R, Buckberg GD. Cardiac remodelling and myocardial recovery: lost in translation? Eur J Heart Fail. 2010;12:789–796. doi: 10.1093/eurjhf/hfq113.
    1. Cokkinos DV, Pantos C. Myocardial remodeling, an overview. Heart Fail Rev. 2011;16:1–4. doi: 10.1007/s10741-010-9192-4.
    1. Gajarsa JJ, Kloner RA. Left ventricular remodeling in the post-infarction heart: a review of cellular, molecular mechanisms, and therapeutic modalities. Heart Fail Rev. 2011;16:13–21. doi: 10.1007/s10741-010-9181-7.
    1. Konstam MA, Kramer DG, Patel AR, Maron MS, Udelson JE. Left ventricular remodeling in heart failure: current concepts in clinical significance and assessment. JACC Cardiovasc Imaging. 2011;4:98–108. doi: 10.1016/j.jcmg.2010.10.008.
    1. Cappola TP. Molecular remodeling in human heart failure. J Am Coll Cardiol. 2008;51:137–138. doi: 10.1016/j.jacc.2007.09.028.
    1. Del Monte F, Hajjar RJ. Intracellular devastation in heart failure. Heart Fail Rev. 2008;13:151–162. doi: 10.1007/s10741-007-9071-9.
    1. Vanderheyden M, Bartunek J. Cardiac resynchronization therapy in dyssynchronous heart failure: zooming in on cellular and molecular mechanisms. Circulation. 2009;119:1192–1194. doi: 10.1161/CIRCULATIONAHA.108.841544.
    1. Flaherty JD, Udelson JE, Gheorghiade M, et al. Assessment and key targets for therapy in the post-myocardial infarction patient with left ventricular dysfunction. Am J Cardiol. 2008;102(5A):5G–12G.
    1. Jiang B, Liao R. The paradoxical role of inflammation in cardiac repair and regeneration. J Cardiovasc Transl Res. 2010;3:410–416. doi: 10.1007/s12265-010-9193-7.
    1. Frangogiannis NG. The inflammatory response in myocardial injury, repair, and remodelling. Nat Rev Cardiol. 2014;11:255–265. doi: 10.1038/nrcardio.2014.28.
    1. Masci PG, Bogaert J. Post myocardial infarction of the left ventricle: the course ahead seen by cardiac MRI. Cardiovasc Diagn Ther. 2012;2:113–127. doi: 10.3978/j.issn.2223-3652.2012.04.06.
    1. Borow KM, Neumann A, Marcus RH, Sareli P, Lang RM. Effects of simultaneous alterations in preload and afterload on measurements of left ventricular contractility in patients with dilated cardiomyopathy: comparisons of ejection phase, isovolumetric and end-systolic force-velocity indexes. J Am Coll Cardiol. 1992;20:787–795.
    1. Cikes M, Solomon SD. Beyond ejection fraction: an integrative approach for assessment of cardiac structure and function in heart failure. Eur Heart J. 2016;37:1642–1650. doi: 10.1093/eurheartj/ehv510.
    1. Konstam MA, Abboud FM. Ejection fraction: misunderstood and overrated (Changing the Paradigm in Categorizing Heart Failure). Circulation. 2017;135:717–719. doi: 10.1161/CIRCULATIONAHA.116.025795.
    1. Pellikka PA, She L, Holly TA, et al. Variability in ejection fraction measured By echocardiography, gated single-photon emission computed tomography, and cardiac magnetic resonance in patients with coronary artery disease and left ventricular dysfunction. JAMA Netw Open. 2018;1:e181456. doi: 10.1001/jamanetworkopen.2018.1456.
    1. Chaggar PS, Malkin CJ, Shaw SM, Williams SG, Channer KS. Neuroendocrine effects on the heart and targets for therapeutic manipulation in heart failure. Cardiovasc Ther. 2009;27:187–193. doi: 10.1111/j.1755-5922.2009.00094.x.
    1. Shrestha K, Tang WH. Cardiorenal syndrome: diagnosis, treatment, and clinical outcomes. Curr Heart Fail Rep. 2010;7:167–174. doi: 10.1007/s11897-010-0025-5.
    1. Triposkiadis F, Karayannis G, Giamouzis G, Skoularigis J, Louridas G, Butler J. The sympathetic nervous system in heart failure physiology, pathophysiology, and clinical implications. J Am Coll Cardiol. 2009;54:1747–1762. doi: 10.1016/j.jacc.2009.05.015.
    1. Metra M, Ponikowski P, Dickstein K, McMurray JJ, Gavazzi A, Bergh CH, Fraser AG, Jaarsma T, Pitsis A, Mohacsi P, Böhm M, Anker S, Dargie H, Brutsaert D, Komajda M Heart Failure Association of the European Society of Cardiology. Advanced chronic heart failure: a position statement from the Study Group on Advanced Heart Failure of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2007;9:684–694. doi: 10.1016/j.ejheart.2007.04.003.
    1. Kramer DG, Trikalinos TA, Kent DM, Antonopoulos GV, Konstam MA, Udelson JE. Quantitative evaluation of drug or device effects on ventricular remodeling as predictors of therapeutic effects on mortality in patients with heart failure and reduced ejection fraction: a meta-analytic approach. J Am Coll Cardiol. 2010;56:392–406. doi: 10.1016/j.jacc.2010.05.011.
    1. Gold MR, Daubert C, Abraham WT, Ghio S, St John Sutton M, Hudnall JH, Cerkvenik J, Linde C. The effect of reverse remodeling on long-term survival in mildly symptomatic patients with heart failure receiving cardiac resynchronization therapy: results of the REVERSE study. Heart Rhythm. 2015;12:524–530. doi: 10.1016/j.hrthm.2014.11.014.
    1. Daubert MA, Adams K, Yow E, et al. NT-proBNP goal achievement is associated with significant reverse remodeling and improved clinical outcomes in HFrEF. JACC Heart Fail. 2019;7:158–168. doi: 10.1016/j.jchf.2018.10.014.
    1. Konstam MA, Kronenberg MW, Rousseau MF, Udelson JE, Melin J, Stewart D, Dolan N, Edens TR, Ahn S, Kinan D. Effects of the angiotensin converting enzyme inhibitor enalapril on the long-term progression of left ventricular dilatation in patients with asymptomatic systolic dysfunction. SOLVD (Studies of Left Ventricular Dysfunction) Investigators. Circulation. 1993;88:2277–2283.
    1. Konstam MA, Patten RD, Thomas I, et al. Effects of losartan and captopril on left ventricular volumes in elderly patients with heart failure: results of the ELITE ventricular function substudy. Am Heart J. 2000;139:1081–1087.
    1. Pitt B, Poole-Wilson PA, Segal R, Martinez FA, Dickstein K, Camm AJ, Konstam MA, Riegger G, Klinger GH, Neaton J, Sharma D, Thiyagarajan B. Effect of losartan compared with captopril on mortality in patients with symptomatic heart failure: randomised trial–the Losartan Heart Failure Survival Study ELITE II. Lancet. 2000;355:1582–1587. doi: 10.1016/s0140-6736(00)02213-3.
    1. Bristow MR, Gilbert EM, Abraham WT, Adams KF, Fowler MB, Hershberger RE, Kubo SH, Narahara KA, Ingersoll H, Krueger S, Young S, Shusterman N. Carvedilol produces dose-related improvements in left ventricular function and survival in subjects with chronic heart failure. MOCHA Investigators. Circulation. 1996;94:2807–2816.
    1. Colucci WS, Kolias TJ, Adams KF, Armstrong WF, Ghali JK, Gottlieb SS, Greenberg B, Klibaner MI, Kukin ML, Sugg JE REVERT Study Group. Metoprolol reverses left ventricular remodeling in patients with asymptomatic systolic dysfunction: the REversal of VEntricular Remodeling with Toprol-XL (REVERT) trial. Circulation. 2007;116:49–56. doi: 10.1161/CIRCULATIONAHA.106.666016.
    1. Tardif JC, O’Meara E, Komajda M, Böhm M, Borer JS, Ford I, Tavazzi L, Swedberg K SHIFT Investigators. Effects of selective heart rate reduction with ivabradine on left ventricular remodelling and function: results from the SHIFT echocardiography substudy. Eur Heart J. 2011;32:2507–2515. doi: 10.1093/eurheartj/ehr311.
    1. Gold MR, Linde C, Abraham WT, Gardiwal A, Daubert JC. The impact of cardiac resynchronization therapy on the incidence of ventricular arrhythmias in mild heart failure. Heart Rhythm. 2011;8:679–684. doi: 10.1016/j.hrthm.2010.12.031.
    1. Barsheshet A, Wang PJ, Moss AJ, Solomon SD, Al-Ahmad A, McNitt S, Foster E, Huang DT, Klein HU, Zareba W, Eldar M, Goldenberg I. Reverse remodeling and the risk of ventricular tachyarrhythmias in the MADIT-CRT (Multicenter Automatic Defibrillator Implantation Trial-Cardiac Resynchronization Therapy). J Am Coll Cardiol. 2011;57:2416–2423. doi: 10.1016/j.jacc.2010.12.041.
    1. Borow KM, Green LH, Mann T, Sloss LJ, Braunwald E, Collins JJ, Cohn L, Grossman W. End-systolic volume as a predictor of postoperative left ventricular performance in volume overload from valvular regurgitation. Am J Med. 1980;68:655–663.
    1. White HD, Norris RM, Brown MA, Brandt PW, Whitlock RM, Wild CJ. Left ventricular end-systolic volume as the major determinant of survival after recovery from myocardial infarction. Circulation. 1987;76:44–51.
    1. McManus DD, Shah SJ, Fabi MR, Rosen A, Whooley MA, Schiller NB. Prognostic value of left ventricular end-systolic volume index as a predictor of heart failure hospitalization in stable coronary artery disease: data from the Heart and Soul Study. J Am Soc Echocardiogr. 2009;22:190–197. doi: 10.1016/j.echo.2008.11.005.
    1. The SOLVD Investigators. Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. N Engl J Med. 1991;325:293–302. doi: 10.1056/NEJM199108013250501.
    1. Ypenburg C, van Bommel RJ, Borleffs CJ, Bleeker GB, Boersma E, Schalij MJ, Bax JJ. Long-term prognosis after cardiac resynchronization therapy is related to the extent of left ventricular reverse remodeling at midterm follow-up. J Am Coll Cardiol. 2009;53:483–490. doi: 10.1016/j.jacc.2008.10.032.
    1. Rickard J, Baranowski B, Wilson Tang WH, Grimm RA, Niebauer M, Cantillion D, Wilkoff BL, Varma N. Echocardiographic predictors of long-term survival in patients undergoing cardiac resynchronization therapy: what is the optimal metric? J Cardiovasc Electrophysiol. 2017;28:410–415. doi: 10.1111/jce.13175.
    1. Braunwald E. Control of myocardial oxygen consumption: physiologic and clinical considerations. Am J Cardiol. 1971;27:416–432.
    1. Boyette LC. Treasure Island, FL: StatPearls Publishing; 2018. Physiology, Myocardial Oxygen Demand. StatPearl [Internet].
    1. Holubarsch C, Hasenfuss G, Thierfelder L, Just H. Left ventricular geometry, myocardial function and energetics of the dilated left ventricle. Influence of vasodilators and positive inotropic substances. Herz. 1991;16 Spec No 1:298–303.
    1. Gulati A, Jabbour A, Ismail TF, et al. Association of fibrosis with mortality and sudden cardiac death in patients with nonischemic dilated cardiomyopathy. JAMA. 2013;309:896–908. doi: 10.1001/jama.2013.1363.
    1. Puntmann VO, Carr-White G, Jabbour A, et al. International T1 Multicentre CMR Outcome Study. T1-Mapping and outcome in nonischemic cardiomyopathy: all-cause mortality and heart failure. JACC Cardiovasc Imaging. 2016;9:40–50. doi: 10.1016/j.jcmg.2015.12.001.
    1. Hamamoto H, Gorman JH, III, Ryan LP, Hinmon R, Martens TP, Schuster MD, Plappert T, Kiupel M, St John-Sutton MG, Itescu S, Gorman RC. Allogeneic mesenchymal precursor cell therapy to limit remodeling after myocardial infarction: the effect of cell dosage. Ann Thorac Surg. 2009;87:794–801. doi: 10.1016/j.athoracsur.2008.11.057.
    1. Psaltis PJ, Paton S, See F, Arthur A, Martin S, Itescu S, Worthley SG, Gronthos S, Zannettino AC. Enrichment for STRO-1 expression enhances the cardiovascular paracrine activity of human bone marrow-derived mesenchymal cell populations. J Cell Physiol. 2010;223:530–540. doi: 10.1002/jcp.22081.
    1. Cheng Y, Yi G, Conditt GB, et al. Catheter-based endomyocardial delivery of mesenchymal precursor cells using 3D echo guidance improves cardiac function in a chronic myocardial injury ovine model. Cell Transplant. 2013;22:2299–2309. doi: 10.3727/096368912X658016.
    1. Kou S, Caballero L, Dulgheru R, et al. Echocardiographic reference ranges for normal cardiac chamber size: results from the NORRE study. Eur Heart J Cardiovasc Imaging. 2014;15:680–690. doi: 10.1093/ehjci/jet284.
    1. Lang RM, Badano LP, Mor-Avi V, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28:1.e14–39.e14. doi: 10.1016/j.echo.2014.10.003.
    1. Bernard A, Addetia K, Dulgheru R, et al. 3D echocardiographic reference ranges for normal left ventricular volumes and strain: results from the EACVI NORRE study. Eur Heart J Cardiovasc Imaging. 2017;18:475–483. doi: 10.1093/ehjci/jew284.
    1. Brutsaert DL. Cardiac endothelial-myocardial signaling: its role in cardiac growth, contractile performance, and rhythmicity. Physiol Rev. 2003;83:59–115. doi: 10.1152/physrev.00017.2002.
    1. Marti CN, Gheorghiade M, Kalogeropoulos AP, Georgiopoulou VV, Quyyumi AA, Butler J. Endothelial dysfunction, arterial stiffness, and heart failure. J Am Coll Cardiol. 2012;60:1455–1469. doi: 10.1016/j.jacc.2011.11.082.
    1. Lim SL, Lam CS, Segers VF, Brutsaert DL, De Keulenaer GW. Cardiac endothelium-myocyte interaction: clinical opportunities for new heart failure therapies regardless of ejection fraction. Eur Heart J. 2015;36:2050–2060. doi: 10.1093/eurheartj/ehv132.
    1. Fujisue K, Sugiyama S, Matsuzawa Y, et al. Prognostic significance of peripheral microvascular endothelial dysfunction in heart failure with reduced left ventricular ejection fraction. Circ J. 2015;79:2623–2631. doi: 10.1253/circj.CJ-15-0671.
    1. Schechter M, Matetzy S, Arad M, Feinberg MS, Freimark D. Vascular endothelial function predicts mortality risk in patients with advanced ischaemic chronic heart failure. Eur J Heart Fail. 2009;11:588–593.
    1. Pocock SJ, Ariti CA, McMurray JJ, Maggioni A, Køber L, Squire IB, Swedberg K, Dobson J, Poppe KK, Whalley GA, Doughty RN Meta-Analysis Global Group in Chronic Heart Failure. Predicting survival in heart failure: a risk score based on 39,372 patients from 30 studies. Eur Heart J. 2013;34:1404–1413. doi: 10.1093/eurheartj/ehs337.
    1. Meyer B, Mörtl D, Strecker K, Hülsmann M, Kulemann V, Neunteufl T, Pacher R, Berger R. Flow-mediated vasodilation predicts outcome in patients with chronic heart failure: comparison with B-type natriuretic peptide. J Am Coll Cardiol. 2005;46:1011–1018. doi: 10.1016/j.jacc.2005.04.060.
    1. Mohan P, Brutsaert DL, Paulus WJ, Sys SU. Myocardial contractile response to nitric oxide and cGMP. Circulation. 1996;93:1223–1229.
    1. Rastaldo R, Pagliaro P, Cappello S, Penna C, Mancardi D, Westerhof N, Losano G. Nitric oxide and cardiac function. Life Sci. 2007;81:779–793. doi: 10.1016/j.lfs.2007.07.019.
    1. Zelis R, Sinoway LI, Musch TI, et al. Regional blood flow in congestive heart failure: concept of compensatory mechanisms with short and long-time constants. Am J Cardiol. 1988;62:2E–8E.
    1. Borlaug BA. Mechanisms of exercise intolerance in heart failure with preserved ejection fraction. Circ J. 2014;78:20–32.
    1. Katz SD, Khan T, Zeballos GA, Mathew L, Potharlanka P, Knecht M, Whelan J. Decreased activity of the L-arginine-nitric oxide metabolic pathway in patients with congestive heart failure. Circulation. 1999;99:2113–2117.
    1. Gheorghiade M, Marti CN, Sabbah HN, et al. Academic Research Team in Heart Failure (ART-HF) Soluble guanylate cyclase: a potential therapeutic target for heart failure. Heart Fail Rev. 2013;18:123–134. doi: 10.1007/s10741-012-9323-1.
    1. Randi AM, Laffan MA, Starke RD, et al. Von Willebrand factor, angiodysplasia and angiogenesis. Hematol Infect Dis. 2013;5:e2013060. doi: 10.4084/MJHID.2013.060.
    1. Carmeliet P. Angiogenesis in health and disease. Nat Med. 2003;9:653–660. doi: 10.1038/nm0603-653.
    1. Jain RK. Molecular regulation of vessel maturation. Nat Med. 2003;9:685–693. doi: 10.1038/nm0603-685.
    1. Alfieri A, Ong AC, Kammerer RA, Solanky T, Bate S, Tasab M, Brown NJ, Brookes ZL. Angiopoietin-1 regulates microvascular reactivity and protects the microcirculation during acute endothelial dysfunction: role of eNOS and VE-cadherin. Pharmacol Res. 2014;80:43–51. doi: 10.1016/j.phrs.2013.12.008.
    1. Eklund L, Olsen BR. Tie receptors and their angiopoietin ligands are context-dependent regulators of vascular remodeling. Exp Cell Res. 2006;312:630–641. doi: 10.1016/j.yexcr.2005.09.002.
    1. Suri C, Jones PF, Patan S, Bartunkova S, Maisonpierre PC, Davis S, Sato TN, Yancopoulos GD. Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell. 1996;87:1171–1180.
    1. Lobov IB, Brooks PC, Lang RA. Angiopoietin -2 displays VEGF-dependent modulation of capillary structure and endothelial cell survival in vivo. Proc Natl Acad Sci USA. 2002;99:11205–11210.
    1. Suri C, McClain J, Thurston G, McDonald DM, Zhou H, Oldmixon EH, Sato TN, Yancopoulos GD. Increased vascularization in mice overexpressing angiopoietin-1. Science. 1998;282:468–471.
    1. Thurston G, Suri C, Smith K, McClain J, Sato TN, Yancopoulos GD, McDonald DM. Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science. 1999;286:2511–2514.
    1. Fiedler U, Scharpfenecker M, Koidl S, Hegen A, Grunow V, Schmidt JM, Kriz W, Thurston G, Augustin HG. The Tie-2 ligand angiopoietin-2 is stored in and rapidly released upon stimulation from endothelial cell Weibel-Palade bodies. Blood. 2004;103:4150–4156. doi: 10.1182/blood-2003-10-3685.
    1. Daly C, Eichten A, Castanaro C, Pasnikowski E, Adler A, Lalani AS, Papadopoulos N, Kyle AH, Minchinton AI, Yancopoulos GD, Thurston G. Angiopoietin-2 functions as a Tie2 agonist in tumor models, where it limits the effects of VEGF inhibition. Cancer Res. 2013;73:108–118. doi: 10.1158/0008-5472.CAN-12-2064.
    1. Chong AY, Caine GJ, Freestone B, Blann AD, Lip GY. Plasma angiopoietin-1, angiopoietin-2, and angiopoietin receptor Tie-2 levels in congestive heart failure. J Am Coll Cardiol. 2004;43:423–428. doi: 10.1016/j.jacc.2003.08.042.
    1. Eleuteri E, Di Stefano A, Tarro Genta F, Vicari C, Gnemmi I, Colombo M, Mezzani A, Giannuzzi P. Stepwise increase of angiopoietin-2 serum levels is related to haemodynamic and functional impairment in stable chronic heart failure. Eur J Cardiovasc Prev Rehabil. 2011;18:607–614. doi: 10.1177/1741826710389410.
    1. Eleuteri E, Di Stefano A, Giordano A, Corrà U, Tarro Genta F, Gnemmi I, Giannuzzi P. Prognostic value of angiopoietin-2 in patients with chronic heart failure. Int J Cardiol. 2016;212:364–368. doi: 10.1016/j.ijcard.2016.03.005.
    1. Braunwald E. Biomarkers in heart failure. N Engl J Med. 2008;358:2148–2159. doi: 10.1056/NEJMra0800239.
    1. Kortesidis A, Zannettino A, Isenmann S, Shi S, Lapidot T, Gronthos S. Stromal-derived factor-1 promotes the growth, survival, and development of human bone marrow stromal stem cells. Blood. 2005;105:3793–3801. doi: 10.1182/blood-2004-11-4349.
    1. Yau TM, Pagani FD, Mancini DM, et al. Cardiothoracic Surgical Trials Network. Intramyocardial injection of mesenchymal precursor cells and successful temporary weaning from left ventricular assist device support in patients with advanced heart failure: a randomized clinical Trial. JAMA. 2019;321:1176–1186. doi: 10.1001/jama.2019.2341.
    1. Grosman-Rimon L, Jacobs I, Tumiati LC, McDonald MA, Bar-Ziv SP, Fuks A, Kawajiri H, Lazarte J, Ghashghai A, Shogilev DJ, Cherney DZ, Rao V. Longitudinal assessment of inflammation in recipients of continuous-flow left ventricular assist devices. Can J Cardiol. 2015;31:348–356. doi: 10.1016/j.cjca.2014.12.006.
    1. Grosman-Rimon L, Billia F, Fuks A, Jacobs I, A McDonald M, Cherney DZ, Rao V. New therapy, new challenges: the effects of long-term continuous flow left ventricular assist device on inflammation. Int J Cardiol. 2016;215:424–430. doi: 10.1016/j.ijcard.2016.04.133.
    1. Patel SR, Vukelic S, Jorde UP. Bleeding in continuous flow left ventricular assist device recipients: an acquired vasculopathy? J Thorac Dis. 2016;8:E1321–E1327. doi: 10.21037/jtd.2016.10.81.
    1. Mehra MR, Goldstein GN, Cleveland JC, et al. Two-Year outcomes with a magnetically levitated cardiac pump in heart failure (The Momentum-3 Trial). N Engl J Med. 2018;378:1386–1395. doi: 10.1056/NEJMoa1800866.
    1. Gutterman DD, Chabowski DS, Kadlec AO, Durand MJ, Freed JK, Ait-Aissa K, Beyer AM. The human microcirculation: regulation of flow and beyond. Circ Res. 2016;118:157–172. doi: 10.1161/CIRCRESAHA.115.305364.
    1. Hasin T, Matsuzama Y, Guddeti RR, Aoki T, Kwon TG, Schettle S, Lennon RJ, Chokka RG, Lerman A, Kushwaha SS. Attenuation in peripheral endothelial function after continuous flow left ventricular assist device therapy is associated with cardiovascular adverse events. Circ J. 2015;79:770–777. doi: 10.1253/circj.CJ-14–1079.
    1. Liu L, Wolfe RA, Huang X. Shared frailty models for recurrent events and a terminal event. Biometrics. 2004;60:747–756. doi: 10.1111/j.0006-341X.2004.00225.x.
    1. Greenberg B, Yaroshinsky A, Zsebo KM, Butler J, Felker GM, Voors AA, Rudy JJ, Wagner K, Hajjar RJ. Design of a phase 2b trial of intracoronary administration of AAV1/SERCA2a in patients with advanced heart failure: the CUPID 2 trial (Calcium Up-Regulation by Percutaneous Administration of Gene Therapy in Cardiac Disease Phase 2b). JACC Heart Fail. 2014;2:84–92. doi: 10.1016/j.jchf.2013.09.008.
    1. U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Center for Biologics Evaluation and Research (CBER) Guidance for Industry: adaptive design clinical trials for drugs and biologics. Draft guidance. U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Center for Biologics and Evaluation and Research (CBER).February 2010
    1. Setoguchi S, Stevenson LW, Schneeweiss S. Repeated hospitalizations predict mortality in the community population with heart failure. Am Heart J. 2007;154:260–266. doi: 10.1016/j.ahj.2007.01.041.
    1. Rogers JK, Yaroshinsky A, Pocock SJ, Stokar D, Pogoda J. Analysis of recurrent events with an associated informative dropout time: application of the joint frailty model. Stat Med. 2016;35:2195–2205. doi: 10.1002/sim.6853.
    1. McMurray JJ, Ostergren J, Swedberg K, Granger CB, Held P, Michelson EL, Olofsson B, Yusuf S, Pfeffer MA CHARM Investigators and Committees. Effects of candesartan in patients with chronic heart failure and reduced left-ventricular systolic function taking angiotensin-converting-enzyme inhibitors: the CHARM-Added trial. Lancet. 2003;362:767–771. doi: 10.1016/S0140-6736(03)14283-3.
    1. Cohn JN, Tognoni G Valsartan Heart Failure Trial Investigators. A randomized trial of the angiotensin-receptor blocker valsartan in chronic heart failure. N Engl J Med. 2001;345:1667–1675. doi: 10.1056/NEJMoa010713.
    1. Rogers JK, McMurray JJ, Pocock SJ, Zannad F, Krum H, van Veldhuisen DJ, Swedberg K, Shi H, Vincent J, Pitt B. Eplerenone in patients with systolic heart failure and mild symptoms: analysis of repeat hospitalizations. Circulation. 2012;126:2317–2323. doi: 10.1161/CIRCULATIONAHA.112.110536.
    1. Akacha K, Mueller-Velten G. Recurrent event endpoints in cardiovascular outcome trials-What is the estimand of interest?. Presented at: PSI/BBS Meeting; September 14, 2016; Basel, CH. . Accessed June 25, 2019.
    1. Anker SD, Schroeder S, Atar D, et al. Traditional and new composite endpoints in heart failure clinical trials: facilitating comprehensive efficacy assessments and improving trial efficiency. Eur J Heart Fail. 2016;18:482–489. doi: 10.1002/ejhf.516.
    1. Wei J, Mendolia F. Efficacy comparisons of recurrent event and time-to-first event analysis.. Paper presented at: 3rd EFSPI workshop on Regulatory Statistics; 24-25th September 2018; Basel, CH.

Source: PubMed

3
Prenumerera