Stellate ganglion block reduces symptoms of Long COVID: A case series

Luke D Liu, Deborah L Duricka, Luke D Liu, Deborah L Duricka

Abstract

After recovering from COVID-19, a significant proportion of symptomatic and asymptomatic individuals develop Long COVID. Fatigue, orthostatic intolerance, brain fog, anosmia, and ageusia/dysgeusia in Long COVID resemble "sickness behavior," the autonomic nervous system response to pro-inflammatory cytokines (Dantzer et al., 2008). Aberrant network adaptation to sympathetic/parasympathetic imbalance is expected to produce long-standing dysautonomia. Cervical sympathetic chain activity can be blocked with local anesthetic, allowing the regional autonomic nervous system to "reboot." In this case series, we successfully treated two Long COVID patients using stellate ganglion block, implicating dysautonomia in the pathophysiology of Long COVID and suggesting a novel treatment.

Keywords: Cerebral blood flow; Dysautonomia; Long COVID/PASC; Myalgic encephalitis/chronic fatigue syndrome (ME/CFS); Postural orthopedic tachycardia syndrome (POTS); Stellate ganglion block.

Copyright © 2021 The Authors. Published by Elsevier B.V. All rights reserved.

Figures

Fig. 1
Fig. 1
Intensity of Long COVID symptoms over time. Data was collected retrospectively for Pre-COVID timepoint. NOTE: Y axis set to −1 to visualize a score of zero.
Fig. 2
Fig. 2
Intensity of Long COVID symptoms over time. Data was collected retrospectively for Pre-COVID timepoint. NOTE: Y axis set to −1 to visualize a score of zero.

References

    1. Barizien N., Le Guen M., Russel S., et al. Clinical characterization of dysautonomia in long COVID-19 patients. Sci. Rep. 2021;11:14042. doi: 10.1038/s41598-021-93546-5. PMID: 34234251; PMCID: PMC8263555.
    1. Dani M., Dirksen A., Taraborrelli P., Torocastro M., Panagopoulos D., Sutton R., Lim P.B. Autonomic dysfunction in ‘long COVID’: rationale, physiology and management strategies. Clin. Med. (Lond) 2021 Jan;21(1):e63–e67. doi: 10.7861/clinmed.2020-0896. Epub 2020 Nov 26. PMID: 33243837; PMCID: PMC7850225.
    1. Dantzer R., O’Connor J.C., Freund G.G., Johnson R.W., Kelley K.W. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat. Rev. Neurosci. 2008 Jan;9(1):46–56. doi: 10.1038/nrn2297. PMID: 18073775; PMCID: PMC2919277.
    1. Kang C.K., Oh S.T., Chung R.K., Lee H., Park C.A., Kim Y.B., Yoo J.H., Kim D.Y., Cho Z.H. Effect of stellate ganglion block on the cerebrovascular system: magnetic resonance angiography study. Anesthesiology. 2010 Oct;113(4):936–944. doi: 10.1097/ALN.0b013e3181ec63f5. (PMID: 20823762)
    1. Le Bert N., Clapham H.E., Tan A.T., Chia W.N., Tham C.Y.L., Lim J.M., Kunasegaran K., Tan L.W.L., Dutertre C.A., Shankar N., Lim J.M.E., Sun L.J., Zahari M., Tun Z.M., Kumar V., Lim B.L., Lim S.H., Chia A., Tan Y.J., Tambyah P.A., Kalimuddin S., Lye D., Low J.G.H., Wang L.F., Wan W.Y., Hsu L.Y., Bertoletti A., Tam C.C. Highly functional virus-specific cellular immune response in asymptomatic SARS-CoV-2 infection. J. Exp. Med. 2021 May 3;218(5) doi: 10.1084/jem.20202617. PMID: 33646265; PMCID: PMC7927662.
    1. Li M., Zhang Y., Lu J., Li L., Gao H., Ma C., Dai E., Wei L. Asymptomatic COVID-19 individuals tend to establish relatively balanced innate and adaptive immune responses. Pathogens. 2021 Aug 30;10(9):1105. doi: 10.3390/pathogens10091105. PMID: 34578138; PMCID: PMC8468997.
    1. Lipov E.G., Navaie M., Stedje-Larsen E.T., Burkhardt K., Smith J.C., Sharghi L.H., Hickey A.H. A novel application of stellate ganglion block: preliminary observations for the treatment of post-traumatic stress disorder. Mil. Med. 2012;177(2):125–127.
    1. Logue J.K., Franko N.M., McCulloch D.J., McDonald D., Magedson A., Wolf C.R., Chu H.Y. Sequelae in adults at 6 months after COVID-19 infection. JAMA Netw. Open. 2021 Feb 1;4(2) doi: 10.1001/jamanetworkopen.2021.0830. Erratum in: JAMA Netw Open. 2021 Mar 1;4(3):e214572. PMID: 33606031; PMCID: PMC7896197.
    1. Matschke J., Lütgehetmann M., Hagel C., Sperhake J.P., Schröder A.S., Edler C., Mushumba H., Fitzek A., Allweiss L., Dandri M., Dottermusch M., Heinemann A., Pfefferle S., Schwabenland M., Sumner Magruder D., Bonn S., Prinz M., Gerloff C., Püschel K., Krasemann S., Aepfelbacher M., Glatzel M. Neuropathology of patients with COVID-19 in Germany: a post-mortem case series. Lancet Neurol. 2020 Nov;19(11):919–929. doi: 10.1016/S1474-4422(20)30308-2. Epub 2020 Oct 5. PMID: 33031735; PMCID: PMC7535629.
    1. McQuaid C., Brady M., Deane R. SARS-CoV-2: is there neuroinvasion? Fluids Barriers CNS. 2021 Jul 14;18(1):32. doi: 10.1186/s12987-021-00267-y. PMID: 34261487; PMCID: PMC8278192.
    1. Medow M.S., Sood S., Messer Z., Dzogbeta S., Terilli C., Stewart J.M. Phenylephrine alteration of cerebral blood flow during orthostasis: effect on n-back performance in chronic fatigue syndrome. J. Appl. Physiol. 2014 Nov 15;117(10):1157–1164. doi: 10.1152/japplphysiol.00527.2014. (1985). Epub 2014 Oct 2. PMID: 25277740; PMCID: PMC4233252.
    1. Moon H.S., Lee H.J., Sung C.H., Lim S.J., Choi J.H. The efficacy of stellate ganglion block in sensorineural anosmia patients unresponsive to steroid therapy. Korean J. Pain. 2007;20(2):154–157.
    1. Moon H.S., Chon J.Y., Lee S.H., Ju Y.M., Sung C.H. Long-term results of stellate ganglion block in patients with olfactory dysfunction. Korean J. Pain. 2013;26(1):57–61.
    1. Mulvaney S.W., Lynch J.H., Hickey M.J., Rahman-Rawlins T., Schroeder M., Kane S., Lipov E. Stellate ganglion block used to treat symptoms associated with combat-related post-traumatic stress disorder: a case series of 166 patients. Mil. Med. 2014;179(10):1133–1140.
    1. Othman A.H., Zaky A.H. Management of hot flushes in breast cancer survivors: comparison between stellate ganglion block and pregabalin. Pain Med. 2014 Mar;15(3):410–417. doi: 10.1111/pme.12331. Epub 2014 Jan 14. PMID: 24423018.
    1. Park H., Kim D.Y., Bae J., Lee S. The effect of stellate ganglion block on the treatment of Sensorineural olfactory disorder following upper respiratory tract infection. Korean J. Otorhinolaryngol. 2013;56:84–89.
    1. Patterson B.K., Guevara-Coto J., Yogendra R., Francisco E.B., Long E., Pise A., Rodrigues H., Parikh P., Mora J., Mora-Rodríguez R.A. Immune-based prediction of COVID-19 severity and chronicity decoded using machine learning. Front. Immunol. 2021 Jun 28;(12) doi: 10.3389/fimmu.2021.700782. PMID: 34262570; PMCID: PMC8273732.
    1. Porzionato A., Emmi A., Barbon S., Boscolo-Berto R., Stecco C., Stocco E., Macchi V., De Caro R. Sympathetic activation: a potential link between comorbidities and COVID-19. FEBS J. 2020;287(17):3681–3688. doi: 10.1111/febs.15481. Epub 2020 Aug 1. PMID: 32779891; PMCID: PMC7405290.
    1. Rahimzadeh P., Imani F., Nafissi N., Ebrahimi B., Faiz S.H.R. Comparison of the effects of stellate ganglion block and paroxetine on hot flashes and sleep disturbance in breast cancer survivors. Cancer Manag. Res. 2018 Oct 26;10:4831–4837. doi: 10.2147/CMAR.S173511. PMID: 30464591; PMCID: PMC6208490.
    1. Rickles J.A. Ambulatory use of sympathetic nerve blocks: present day clinical indications. Angiology. 1977;28(6):394–402.
    1. Song E., Zhang C., Israelow B., Lu-Culligan A., Prado A.V., Skriabine S., Lu P., Weizman O.E., Liu F., Dai Y., Szigeti-Buck K., Yasumoto Y., Wang G., Castaldi C., Heltke J., Ng E., Wheeler J., Alfajaro M.M., Levavasseur E., Fontes B., Ravindra N.G., Van Dijk D., Mane S., Gunel M., Ring A., Kazmi S.A.J., Zhang K., Wilen C.B., Horvath T.L., Plu I., Haik S., Thomas J.L., Louvi A., Farhadian S.F., Huttner A., Seilhean D., Renier N., Bilguvar K., Iwasaki A. Neuroinvasion of SARS-CoV-2 in human and mouse brain. J. Exp. Med. 2021 Mar 1;218(3) doi: 10.1084/jem.20202135. PMID: 33433624; PMCID: PMC7808299.
    1. Sonnweber T., Boehm A., Sahanic S., Pizzini A., Aichner M., Sonnweber B., Kurz K., Koppelstätter S., Haschka D., Petzer V., Hilbe R., Theurl M., Lehner D., Nairz M., Puchner B., Luger A., Schwabl C., Bellmann-Weiler R., Wöll E., Widmann G., Tancevski I., Judith-Löffler-Ragg Weiss G. Persisting alterations of iron homeostasis in COVID-19 are associated with non-resolving lung pathologies and poor patients’ performance: a prospective observational cohort study. Respir. Res. 2020 Oct 21;21(1):276. doi: 10.1186/s12931-020-01546-2. PMID: 33087116; PMCID: PMC7575703.
    1. Soriano J.B., Allan M., Alsokhn C., Alwan N.A., Askie L., Davis H.E., Diaz J.V., Dua T., de Groote W., Jakob R., Lado M., Marshall J., Murthy S., Preller J., Relan P., Schiess N., Seahwag A. World Health Organization; 6 October 2021. A Clinical Case Definition of Post COVID-19 Condition by a Delphi Consensus.
    1. Staud R., Boissoneault J., Craggs J.G., Lai S., Robinson M.E. Task related cerebral blood flow changes of patients with chronic fatigue syndrome: an arterial spin labeling study. Fatigue. 2018;6(2):63–79. doi: 10.1080/21641846.2018.1453919. Epub 2018 Mar 20. PMID: 29707427; PMCID: PMC5914525.
    1. Stute N.L., Stickford J.L., Province V.M., Augenreich M.A., Ratchford S.M., Stickford A.S.L. COVID-19 is getting on our nerves: sympathetic neural activity and haemodynamics in young adults recovering from SARS-CoV-2. J. Physiol. 2021 Sep;599(18):4269–4285. doi: 10.1113/JP281888. Epub 2021 Aug 23. PMID: 34174086; PMCID: PMC8447023.
    1. ter Laan M., van Dijk J.M., Elting J.W., Staal M.J., Absalom A.R. Sympathetic regulation of cerebral blood flow in humans: a review. Br. J. Anaesth. 2013 Sep;111(3):361–367. doi: 10.1093/bja/aet122. Epub 2013 Apr 24. PMID: 23616589.
    1. Tian Y., Wittwer E.D., Kapa S., McLeod C.J., Xiao P., Noseworthy P.A., Mulpuru S.K., Deshmukh A.J., Lee H.C., Ackerman M.J., Asirvatham S.J., Munger T.M., Liu X.P., Friedman P.A., Cha Y.M. Effective use of percutaneous stellate ganglion blockade in patients with electrical storm. Circ. Arrhythm. Electrophysiol. 2019;12(9) doi: 10.1161/CIRCEP.118.007118. Epub 2019 Sep 13.
    1. Tracey K.J. Reflex control of immunity. Nat. Rev. Immunol. 2009 Jun;9(6):418–428. doi: 10.1038/nri2566. PMID: 19461672; PMCID: PMC4535331.
    1. van Campen C.L.M.C., Verheugt F.W.A., Rowe P.C., Visser F.C. Cerebral blood flow is reduced in ME/CFS during head-up tilt testing even in the absence of hypotension or tachycardia: a quantitative, controlled study using Doppler echography. Clin. Neurophysiol. Pract. 2020 Feb 8;(5):50–58. doi: 10.1016/j.cnp.2020.01.003. PMID: 32140630; PMCID: PMC7044650.
    1. van Campen C.L.M.C., Rowe P.C., Visser F.C. Cerebral blood flow is reduced in severe myalgic encephalomyelitis/chronic fatigue syndrome patients during mild orthostatic stress testing: an exploratory study at 20 degrees of head-up tilt testing. Healthcare (Basel) 2020 Jun 13;8(2):169. doi: 10.3390/healthcare8020169. PMID: 32545797; PMCID: PMC7349207.
    1. van Campen C.L.M.C., Rowe P.C., Visser F.C. Cerebral blood flow remains reduced after tilt testing in myalgic encephalomyelitis/chronic fatigue syndrome patients. Clin. Neurophysiol. Pract. 2021 Sep 23;(6):245–255. doi: 10.1016/j.cnp.2021.09.001. PMID: 34667909; PMCID: PMC8505270.
    1. Wells R., Malik V., Brooks A.G., Linz D., Elliott A.D., Sanders P., Page A., Baumert M., Lau D.H. Cerebral blood flow and cognitive performance in postural tachycardia syndrome: insights from sustained cognitive stress test. J. Am. Heart Assoc. 2020 Dec 15;9(24) doi: 10.1161/JAHA.120.017861. e017861. Epub 2020 Dec 5. PMID: 33280488; PMCID: PMC7955388.
    1. White J.C. Diagnostic Novocain block of the sensory and sympathetic nerves: a method of estimating the results which can be obtained by their permanent interruption. Am. J. Surg. 1930;9(2):264–277.

Source: PubMed

3
Prenumerera