Is There a Noninvasive Source of MSCs Isolated with GMP Methods with Better Osteogenic Potential?

Carla C G Pinheiro, Alessander Leyendecker Junior, Daniela Y S Tanikawa, José Ricardo Muniz Ferreira, Reza Jarrahy, Daniela F Bueno, Carla C G Pinheiro, Alessander Leyendecker Junior, Daniela Y S Tanikawa, José Ricardo Muniz Ferreira, Reza Jarrahy, Daniela F Bueno

Abstract

Background: A new trend in the treatment for alveolar clefts in patients with cleft lip and palate involves the use of bone tissue engineering strategies to reduce or eliminate the morbidity associated with autologous bone grafting. The use of mesenchymal stem cells-autologous cells obtained from tissues such as bone marrow and fat-combined with various biomaterials has been proposed as a viable option for use in cleft patients. However, invasive procedures are necessary to obtain the mesenchymal stem cells from these two sources. To eliminate donor site morbidity, noninvasive stem cell sources such as the umbilical cord, orbicularis oris muscle, and deciduous dental pulp have been studied for use in alveolar cleft bone tissue engineering. In this study, we evaluate the osteogenic potential of these various stem cell types.

Methods: Ten cellular strains obtained from each different source (umbilical cord, orbicularis oris muscle, or deciduous dental pulp) were induced to osteogenic differentiation in vitro, and the bone matrix deposition of each primary culture was quantified. To evaluate whether greater osteogenic potential of the established mesenchymal stem cell strains was associated with an increase in the expression profile of neural crest genes, real-time qPCR was performed on the following genes: SRY-box 9, SRY-box 10, nerve growth factor receptor, transcription factor AP-2 alpha, and paired box 3.

Results: The mesenchymal stem cells obtained from deciduous dental pulp and orbicularis oris muscle demonstrated increased osteogenic potential with significantly more extracellular bone matrix deposition when compared to primary cultures obtained from the umbilical cord after twenty-one days in culture (p = 0.007 and p = 0.005, respectively). The paired box 3 gene was more highly expressed in the MSCs obtained from deciduous dental pulp and orbicularis oris muscle than in those obtained from the umbilical cord.

Conclusion: These results suggest that deciduous dental pulp and orbicularis oris muscle stem cells demonstrate superior osteogenic differentiation potential relative to umbilical cord-derived stem cells and that this increased potential is related to their neural crest origins. Based on these observations, and the distinct translational advantage of incorporating stem cells from noninvasive tissue sources into tissue engineering protocols, greater study of these specific cell lines in the setting of alveolar cleft repair is indicated.

Conflict of interest statement

The authors declare that they have no competing interests.

Copyright © 2019 Carla C. G. Pinheiro et al.

Figures

Figure 1
Figure 1
Morphology of adherent cells after isolation from corresponding tissue (sources): (a) orbicular oris muscle-derived stem cell (OOMDSC); (b) dental pulp stem cell (DPSC); (c) umbilical cord mesenchymal stem cell (UC-MSC). Similarity in the fibroblastoid morphology among the three different strains is observed.
Figure 2
Figure 2
Multilineage differentiation in vitro. Row A: OOMDSC; row B: DPSC; and row C: UC-MSC. (a) The control group of undifferentiated strains. (b) Adipogenic differentiation after eighteen days of induction and staining with oil red; white arrows show the fat vesicles. (c) Chondrogenic differentiation after 3 weeks of induction, stained with alcian blue; white arrows show the extracellular matrix formation—mucopolysaccharides. (d) Osteogenic differentiation after 3 weeks of OOMDSC induction, stained with alizarin red S; white arrows show the extracellular matrix deposition.
Figure 3
Figure 3
Quantitative measurement of the extracellular bone matrix stained with alizarin red S. Graphical representation of the measurement of the extracellular bone matrix deposited during osteogenic differentiation induction at 0, 3, 7, 14, and 21 days, showing the beginning of the deposition of extracellular matrix after 7 days of induction in vitro with increases on days 14 and 21.
Figure 4
Figure 4
Neural crest expression in MSCs: relative expression of 5 neural crest genes in undifferentiated DPSC, OOMDSC, and UC-MSC strains. This experiment was repeated with three replicates for each sample (n = 10). The data are presented as the mean +/− (∗ represents the outlier data).

References

    1. Gimbel M., Ashley R. K., Sisodia M., et al. Repair of alveolar cleft defects: reduced morbidity with bone marrow stem cells in a resorbable matrix. The Journal of Craniofacial Surgery. 2007;18(4):895–901. doi: 10.1097/scs.0b013e3180a771af.
    1. Langer R., Vacanti J. Tissue engineering. Science. 1993;260(5110):920–926. doi: 10.1126/science.8493529.
    1. Shanti R. M., Li W.-J., Nesti L. J., Wang X., Tuan R. S. Adult mesenchymal stem cells: biological properties, characteristics, and applications in maxillofacial surgery. Journal of Oral and Maxillofacial Surgery. 2007;65(8):1640–1647. doi: 10.1016/j.joms.2007.04.008.
    1. Yousefi A.-M., James P. F., Akbarzadeh R., Subramanian A., Flavin C., Oudadesse H. Prospect of stem cells in bone tissue engineering: a review. Stem Cells International. 2016;2016:13. doi: 10.1155/2016/6180487.6180487
    1. Alonso N., Tanikawa D. Y. S., da Silva Freitas R., Canan L., Ozawa T. O., Rocha D. L. Evaluation of maxillary alveolar reconstruction using a resorbable collagen sponge with recombinant human bone morphogenetic protein-2 in cleft lip and palate patients. Tissue Engineering Part C: Methods. 2010;16(5):1183–1189. doi: 10.1089/ten.tec.2009.0824.
    1. Canan L. W., da Silva F. R., Alonso N., Tanikawa D. Y. S., Rocha D. L., Coelho J. C. U. Human bone morphogenetic protein-2 use for maxillary reconstruction in cleft lip and palate patients. Journal of Craniofacial Surgery. 2012;23(6):1627–1633. doi: 10.1097/SCS.0b013e31825c75ba.
    1. Dimitriou R., Jones E., McGonagle D., Giannoudis P. V. Bone regeneration: current concepts and future directions. BMC Medicine. 2011;9(1, article 66) doi: 10.1186/1741-7015-9-66.
    1. Miura M., Gronthos S., Zhao M., et al. SHED: stem cells from human exfoliated deciduous teeth. Proceedings of the National Academy of Sciences of the United States of America. 2003;100(10):5807–5812. doi: 10.1073/pnas.0937635100.
    1. Chen J.-Y., Mou X.-Z., Du X.-C., Xiang C. Comparative analysis of biological characteristics of adult mesenchymal stem cells with different tissue origins. Asian Pacific Journal of Tropical Medicine. 2015;8(9):739–746. doi: 10.1016/j.apjtm.2015.07.022.
    1. He H., Nagamura-Inoue T., Tsunoda H., et al. Stage-specific embryonic antigen 4 in Wharton’s jelly-derived mesenchymal stem cells is not a marker for proliferation and multipotency. Tissue Engineering Part A. 2014;20(7–8):1314–1324. doi: 10.1089/ten.tea.2013.0333.
    1. Subramanian A., Fong C.-Y., Biswas A., Bongso A. Comparative characterization of cells from the various compartments of the human umbilical cord shows that the Wharton’s jelly compartment provides the best source of clinically utilizable mesenchymal stem cells. PLoS One. 2015;10(6, article e0127992) doi: 10.1371/journal.pone.0127992.
    1. Carlin R., Davis D., Weiss M., Schultz B., Troyer D. Expression of early transcription factors Oct-4, Sox-2 and Nanog by porcine umbilical cord (PUC) matrix cells. Reproductive Biology and Endocrinology. 2006;4(1):p. 8. doi: 10.1186/1477-7827-4-8.
    1. Kerkis I., Kerkis A., Dozortsev D., et al. Isolation and characterization of a population of immature dental pulp stem cells expressing OCT-4 and other embryonic stem cell markers. Cells, Tissues Organs. 2006;184(3-4):105–116. doi: 10.1159/000099617.
    1. Kerkis I., Caplan A. I. Stem cells in dental pulp of deciduous teeth. Tissue Engineering Part B: Reviews. 2012;18(2):129–138. doi: 10.1089/ten.teb.2011.0327.
    1. Bueno D. F., Kerkis I., Costa A. M., et al. New source of muscle-derived stem cells with potential for alveolar bone reconstruction in cleft lip and/or palate patients. Tissue Engineering Part A. 2009;15(2):427–435. doi: 10.1089/ten.tea.2007.0417.
    1. Cordero D. R., Brugmann S., Chu Y., Bajpai R., Jame M., Helms J. A. Cranial neural crest cells on the move: their roles in craniofacial development. American Journal of Medical Genetics Part A. 2012;155(2):270–279. doi: 10.1002/ajmg.a.33702.
    1. de Mendonca C. A., Bueno D. F., Martins M. T., et al. Reconstruction of large cranial defects in nonimmunosuppressed experimental design with human dental pulp stem cells. The Journal of Craniofacial Surgery. 2008;19(1):204–210. doi: 10.1097/scs.0b013e31815c8a54.
    1. Zucconi E., Vieira N. M., Bueno C. R., Jr., et al. Preclinical studies with umbilical cord mesenchymal stromal cells in different animal models for muscular dystrophy. Journal of Biomedicine & Biotechnology. 2011;2011:9. doi: 10.1155/2011/715251.715251
    1. Daley G. Q., Hyun I., Apperley J. F., et al. Setting global standards for stem cell research and clinical translation: the 2016 ISSCR guidelines. Stem Cell Reports. 2016;6(6):787–797. doi: 10.1016/j.stemcr.2016.05.001.
    1. Codinach M., Blanco M., Ortega I., et al. Design and validation of a consistent and reproducible manufacture process for the production of clinical-grade bone marrow-derived multipotent mesenchymal stromal cells. Cytotherapy. 2016;18(9):1197–1208. doi: 10.1016/j.jcyt.2016.05.012.
    1. Pfaffl M. W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research. 2001;29(9, article e45) doi: 10.1093/nar/29.9.e45.
    1. Baba K., Yamazaki Y., Ishiguro M., et al. Osteogenic potential of human umbilical cord-derived mesenchymal stromal cells cultured with umbilical cord blood-derived fibrin: a preliminary study. Journal of Cranio-Maxillofacial Surgery. 2013;41(8):775–782. doi: 10.1016/j.jcms.2013.01.025.
    1. El Omar R., Beroud J., Stoltz J.-F., Menu P., Velot E., Decot V. Umbilical cord mesenchymal stem cells: the new gold standard for mesenchymal stem cell-based therapies? Tissue Engineering Part B: Reviews. 2014;20(5):523–544. doi: 10.1089/ten.teb.2013.0664.
    1. Ding D.-C., Chang Y.-H., Shyu W.-C., Lin S.-Z. Human umbilical cord mesenchymal stem cells: a new era for stem cell therapy. Cell Transplantation. 2015;24(3):339–347. doi: 10.3727/096368915X686841.
    1. Zuk P. A., Zhu M., Ashjian P., et al. Human adipose tissue is a source of multipotent stem cells. Molecular Biology of the Cell. 2002;13(12):4279–4295. doi: 10.1091/mbc.e02-02-0105.
    1. da Silva M. L., Chagastelles P. C. N. N. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. Journal of Cell Science. 2006;119(11):2204–2213. doi: 10.1242/jcs.02932.
    1. Mao J. J., Prockop D. J. Stem cells in the face: tooth regeneration and beyond. Cell Stem Cell. 2012;11(3):291–301. doi: 10.1016/j.stem.2012.08.010.
    1. Kabir R., Gupta M., Aggarwal A., Sharma D., Sarin A., Kola M. Z. Imperative role of dental pulp stem cells in regenerative therapies: a systematic review. Nigerian Journal of Surgery. 2014;20(1):1–8.
    1. Fernandes T. L., Shimomura K., Asperti A., et al. Development of a novel large animal model to evaluate human dental pulp stem cells for articular cartilage treatment. Stem Cell Reviews. 2018;14(5):734–743. doi: 10.1007/s12015-018-9820-2.
    1. Leyendecker A., Pinheiro C. C. G., Amano M. T., Bueno D. F. The use of human mesenchymal stem cells as therapeutic agents for the in vivo treatment of immune-related diseases: a systematic review. Frontiers in Immunology. 2018;9, article 2056 doi: 10.3389/fimmu.2018.02056.
    1. Bonaventura G., Chamayou S., Liprino A., et al. Different tissue-derived stem cells: a comparison of neural differentiation capability. PLoS One. 2015;10(10, article e0140790) doi: 10.1371/journal.pone.0140790.
    1. Hendriks J., Riesle J., Blitterswijk C. A. Co‐culture in cartilage tissue engineering. Journal of Tissue Engineering and Regenerative Medicine. 2010;4(7):524–531. doi: 10.1002/term.19.
    1. Park Y.-B., Ha C.-W., Lee C.-H., Yoon Y. C., Park Y.-G. Cartilage regeneration in osteoarthritic patients by a composite of allogeneic umbilical cord blood‐derived mesenchymal stem cells and hyaluronate hydrogel: results from a clinical trial for safety and proof‐of‐concept with 7 years of extended follow‐up. Stem Cells Translational Medicine. 2017;6(2):613–621. doi: 10.5966/sctm.2016-0157.
    1. MacHado E., Fernandes M. H., De Sousa Gomes P. Dental stem cells for craniofacial tissue engineering. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology. 2012;113(6):728–733. doi: 10.1016/j.tripleo.2011.05.039.
    1. Akyurekli C., Le Y., Richardson R. B., Fergusson D., Tay J., Allan D. S. A systematic review of preclinical studies on the therapeutic potential of mesenchymal stromal cell-derived microvesicles. Stem Cell Reviews and Reports. 2015;11(1):150–160. doi: 10.1007/s12015-014-9545-9.
    1. Lee S.-Y., Chiang P.-C., Tsai Y.-H., et al. Effects of cryopreservation of intact teeth on the isolated dental pulp stem cells. Journal of Endodontia. 2010;36(8):1336–1340. doi: 10.1016/j.joen.2010.04.015.
    1. Collart-Dutilleul P.-Y., Chaubron F., De Vos J., Cuisinier F. J. Allogenic banking of dental pulp stem cells for innovative therapeutics. World Journal of Stem Cells. 2015;7(7):1010–1021.
    1. Lee M. W., Jang I. K., Yoo K. H., Sung K. W., Koo H. H. Stem and progenitor cells in human umbilical cord blood. International Journal of Hematology. 2010;92(1):45–51. doi: 10.1007/s12185-010-0619-4.
    1. Secco M., Zucconi E., Vieira N. M., et al. Mesenchymal stem cells from umbilical cord: do not discard the cord! Neuromuscular Disorders. 2008;18(1):17–18. doi: 10.1016/j.nmd.2007.11.003.
    1. Tsagias N., Koliakos K.-K., Spyridopoulos T., et al. A simple method for the quantitation of the stem cells derived from human exfoliated deciduous teeth using a luminescent cell viability assay. Cell and Tissue Banking. 2013;15(3):491–499. doi: 10.1007/s10561-013-9419-4.
    1. Jazedje T., Perin P. M., Czeresnia C. E., et al. Human fallopian tube: a new source of multipotent adult mesenchymal stem cells discarded in surgical procedures. Journal of Translational Medicine. 2009;7(1):p. 46. doi: 10.1186/1479-5876-7-46.
    1. Dominici M., Le Blanc K., Mueller I., et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–317. doi: 10.1080/14653240600855905.
    1. Kim D.-W., Staples M., Shinozuka K., Pantcheva P., Kang S.-D., Borlongan C. Wharton’s jelly-derived mesenchymal stem cells: phenotypic characterization and optimizing their therapeutic potential for clinical applications. International Journal of Molecular Sciences. 2013;14(6):11692–11712. doi: 10.3390/ijms140611692.
    1. Can A., Karahuseyinoglu S. Concise review: human umbilical cord stroma with regard to the source of fetus‐derived stem cells. Stem Cells. 2007;25(11):2886–2895. doi: 10.1634/stemcells.2007-0417.
    1. Isobe Y., Koyama N., Nakao K., et al. Comparison of human mesenchymal stem cells derived from bone marrow, synovial fluid, adult dental pulp, and exfoliated deciduous tooth pulp. International Journal of Oral and Maxillofacial Surgery. 2016;45(1):124–131. doi: 10.1016/j.ijom.2015.06.022.
    1. Pinheiro C. C. G., de Pinho M. C., Aranha A. C., Fregnani E., Bueno D. F. Low power laser therapy: a strategy to promote the osteogenic differentiation of deciduous dental pulp stem cells from cleft lip and palate patients. Tissue Engineering Part A. 2018;24(7-8):569–575. doi: 10.1089/ten.tea.2017.0115.
    1. Gronthos S., Mankani M., Brahim J., Robey P. G., Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proceedings of the National Academy of Sciences of the United States of America. 2000;97(25):13625–13630. doi: 10.1073/pnas.240309797.
    1. Park S.-H., Sim W. Y., Min B.-H., Yang S. S., Khademhosseini A., Kaplan D. L. Chip-based comparison of the osteogenesis of human bone marrow- and adipose tissue-derived mesenchymal stem cells under mechanical stimulation. PLoS One. 2012;7(9, article e46689) doi: 10.1371/journal.pone.0046689.
    1. Nakamura S., Yamada Y., Katagiri W., Sugito T., Ito K., Ueda M. Stem cell proliferation pathways comparison between human exfoliated deciduous teeth and dental pulp stem cells by gene expression profile from promising dental pulp. Journal of Endodontia. 2009;35(11):1536–1542. doi: 10.1016/j.joen.2009.07.024.
    1. Fanganiello R. D., Ishiy F. A. A., Kobayashi G. S., Alvizi L., Sunaga D. Y., Passos-Bueno M. R. Increased in vitro osteopotential in SHED associated with higher IGF2 expression when compared with hASCs. Stem Cell Reviews and Reports. 2015;11(4):635–644. doi: 10.1007/s12015-015-9592-x.
    1. Wang W.-D., Melville D. B., Montero-Balaguer M., Hatzopoulos A. K., Knapik E. W. Tfap2a and Foxd3 regulate early steps in the development of the neural crest progenitor population. Developmental Biology. 2011;360(1):173–185. doi: 10.1016/j.ydbio.2011.09.019.
    1. Friedl G., Schmidt H., Rehak I., Kostner G., Schauenstein K., Windhager R. Undifferentiated human mesenchymal stem cells (hMSCs) are highly sensitive to mechanical strain: transcriptionally controlled early osteo-chondrogenic response in vitro. Osteoarthritis and Cartilage. 2007;15(11):1293–1300. doi: 10.1016/j.joca.2007.04.002.
    1. Wahlbuhl M., Reiprich S., Vogl M. R., Bösl M. R., Wegner M. Transcription factor Sox10 orchestrates activity of a neural crest-specific enhancer in the vicinity of its gene. Nucleic Acids Research. 2012;40(1):88–101. doi: 10.1093/nar/gkr734.
    1. Trivanović D., Jauković A., Popović B., et al. Mesenchymal stem cells of different origin: comparative evaluation of proliferative capacity, telomere length and pluripotency marker expression. Life Sciences. 2015;141:61–73. doi: 10.1016/j.lfs.2015.09.019.
    1. Péault B., Rudnicki M., Torrente Y., et al. Stem and progenitor cells in skeletal muscle development, maintenance, and therapy. 2007;15(5):867–877. doi: 10.1038/mt.sj.6300145.
    1. Monsoro-Burq A. H. PAX transcription factors in neural crest development. Seminars in Cell & Developmental Biology. 2015;44:87–96. doi: 10.1016/j.semcdb.2015.09.015.
    1. Plouhinec J.-L., Roche D. D., Pegoraro C., et al. Pax3 and Zic1 trigger the early neural crest gene regulatory network by the direct activation of multiple key neural crest specifiers. Developmental Biology. 2014;386(2):461–472. doi: 10.1016/j.ydbio.2013.12.010.
    1. Mayo V., Sawatari Y., Huang C. Y. C., Garcia-Godoy F. Neural crest-derived dental stem cells—where we are and where we are going. Journal of Dentistry. 2014;42(9):1043–1051. doi: 10.1016/j.jdent.2014.04.007.
    1. Endo T. Molecular mechanisms of skeletal muscle development, regeneration, and osteogenic conversion. Bone. 2015;80:2–13. doi: 10.1016/j.bone.2015.02.028.
    1. Thomson T. M., Rettig W. J., Chesa P. G., Green S. H., Mena A. C., Old L. J. Expression of human nerve growth factor receptor on cells derived from all three germ layers. Experimental Cell Research. 1988;174(2):533–539. doi: 10.1016/0014-4827(88)90323-0.
    1. Quirici N., Soligo D., Bossolasco P., Servida F., Lumini C., Deliliers G. L. Isolation of bone marrow mesenchymal stem cells by anti-nerve growth factor receptor antibodies. Experimental Hematology. 2002;30(7):783–791. doi: 10.1016/S0301-472X(02)00812-3.
    1. Quirici N., Scavullo C., de Girolamo L., et al. Anti-L-NGFR and -CD34 monoclonal antibodies identify multipotent mesenchymal stem cells in human adipose tissue. Stem Cells and Development. 2010;19(6):915–925. doi: 10.1089/scd.2009.0408.
    1. Kuçi S., Kuçi Z., Kreyenberg H., et al. CD271 antigen defines a subset of multipotent stromal cells with immunosuppressive and lymphohematopoietic engraftment-promoting properties. Haematologica. 2010;95(4):651–659. doi: 10.3324/haematol.2009.015065.
    1. Attar A., Langeroudi A. G., Vassagih A., Ahrari I., Maharlooei M. K., Monabati A. Role of CD271 enrichment in the isolation of mesenchymal stromal cells from umbilical cord blood. Cell Biology International. 2013;37(9):1010–1015. doi: 10.1002/cbin.10117.
    1. Mikami Y., Ishii Y., Watanabe N., et al. CD271/p75NTR inhibits the differentiation of mesenchymal stem cells into osteogenic, adipogenic, chondrogenic, and myogenic lineages. Stem Cells and Development. 2011;20(5):901–913. doi: 10.1089/scd.2010.0299.

Source: PubMed

3
Prenumerera