The metabolic cost of lowering blood pressure with hydrochlorothiazide

Angela L Price, Ildiko Lingvay, Edward W Szczepaniak, Jaime Wiebel, Ronald G Victor, Lidia S Szczepaniak, Angela L Price, Ildiko Lingvay, Edward W Szczepaniak, Jaime Wiebel, Ronald G Victor, Lidia S Szczepaniak

Abstract

Background: The landmark Antihypertensive and Lipid-Lowering treatment to prevent Heart Attack Trial (ALLHAT) placed a new spotlight on thiazide diuretics as the first-line therapy for hypertension. This is concerning as thiazide-diuretics may contribute to comorbidities associated with the current epidemic of obesity. Previous randomized clinical trials have linked thiazide diuretic treatment to insulin resistance, metabolic syndrome, and increased incidence of type 2 diabetes.

Methods: This proof of concept, longitudinal, randomized, double-blind study evaluated the effects of the angiotensin II receptor blocker Valsartan and the specific thiazide diuretic Hydrochlorothiazide (HCTZ) on hepatic triglyceride level (primary outcome), as well as triglyceride levels within other organs including the heart, skeletal muscle, and pancreas. Additionally, we evaluated whether myocardial function, insulin sensitivity, and insulin secretion were affected by these treatments.

Results: Hepatic TG levels increased by 57% post HCTZ treatment: ∆hTG HCTZ = 4.12% and remained unchanged post Valsartan treatment: ∆hTG V = 0.06%. The elevation of hepatic TG levels after HCTZ treatment was additionally accompanied by a reduction in insulin sensitivity: ∆SI HCTZ = -1.14. Treatment with Valsartan resulted in improved insulin sensitivity: ∆SI V = 1.24. Treatment-induced changes in hepatic TG levels and insulin sensitivity were statistically significant between groups (phTG = 0.0098 and pSI = 0.0345 respectively). Disposition index, DI, remained unchanged after HCTZ treatment: ∆DI HCTZ = -141 but it was increased by a factor of 2 after treatment with Valsartan: ∆DI V =1018). However, the change between groups was not statistically significant. Both therapies did not modify abdominal visceral and subcutaneous fat mass as well as myocardial structure and function. Additionally, myocardial, pancreatic, and skeletal muscle triglyceride deposits remained unchanged in both therapeutic arms.

Conclusions: Our findings are two-fold and relate to hepatic steatosis and insulin sensitivity. HCTZ treatment worsened hepatic steatosis measured as hepatic triglyceride content and reduced insulin sensitivity. Valsartan treatment did not affect hepatic triglyceride levels and improved insulin sensitivity. The results of this study reinforce the message that in patients at risk for type 2 diabetes it is particularly important to choose an antihypertensive regimen that lowers blood pressure without exacerbating patient's metabolic profile.

Figures

Figure 1
Figure 1
Study consort diagram.
Figure 2
Figure 2
Impact of hydrochlorothiazide (HCTZ) and Valsartan treatments on hepatic triglyceride levels (hTG) and insulin sensitivity (SI). Results of hTG and SI are color coded relative to patient. Black points represent the averages.
Figure 3
Figure 3
(a) Changes in hepatic triglyceride content (hTG) after treatment with Valsartan and HCTZ ( p = 0.0098). (b) Changes in insulin sensitivity (SI) after treatment with HCTZ and Valsartan (p = -0.0345).

References

    1. Barzilay JI, Davis BR, Cutler JA, Pressel SL, Whelton PK, Basile J, Margolis KL, Ong ST, Sadler LS, Summerson J. Fasting glucose levels and incident diabetes mellitus in older nondiabetic adults randomized to receive 3 different classes of antihypertensive treatment: a report from the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT) Arch Intern Med. 2006;166:2191–2201. doi: 10.1001/archinte.166.20.2191.
    1. Stump CS, Hamilton MT, Sowers JR. Effect of antihypertensive agents on the development of type 2 diabetes mellitus. Mayo Clin Proc. 2006;81:796–806. doi: 10.4065/81.6.796.
    1. Elliott WJ, Meyer PM. Incident diabetes in clinical trials of antihypertensive drugs: a network meta-analysis. Lancet. 2007;369:201–207. doi: 10.1016/S0140-6736(07)60108-1.
    1. Gerstein HC, Yusuf S, Bosch J, Pogue J, Sheridan P, Dinccag N, Hanefeld M, Hoogwerf B, Laakso M, Mohan V, Shaw J, Zinman B, Holman RR. Effect of rosiglitazone on the frequency of diabetes in patients with impaired glucose tolerance or impaired fasting glucose: a randomised controlled trial. Lancet. 2006;368:1096–1105.
    1. Basile JN. Antihypertensive therapy, new-onset diabetes, and cardiovascular disease. Int J Clin Pract. 2009;63:656–666. doi: 10.1111/j.1742-1241.2009.02009.x.
    1. Califf RM, Boolell M, Haffner SM, Bethel MA, McMurray J, Duggal A, Holman RR. Prevention of diabetes and cardiovascular disease in patients with impaired glucose tolerance: rationale and design of the Nateglinide and Valsartan in Impaired Glucose Tolerance Outcomes Research (NAVIGATOR) Trial. Am Heart J. 2008;156:623–632. doi: 10.1016/j.ahj.2008.05.017.
    1. Karnes JH, Cooper-DeHoff RM. Antihypertensive medications: benefits of blood pressure lowering and hazards of metabolic effects. Expert Rev Cardiovasc Ther. 2009;7:689–702. doi: 10.1586/erc.09.31.
    1. Kurtz TW, Pravenec M. Antidiabetic mechanisms of angiotensin-converting enzyme inhibitors and angiotensin II receptor antagonists: beyond the renin-angiotensin system. J Hypertens. 2004;22:2253–2261. doi: 10.1097/00004872-200412000-00003.
    1. Sharma AM, Janke J, Gorzelniak K, Engeli S, Luft FC. Angiotensin Blockade Prevents Type 2 Diabetes by Formation of Fat Cells. Hypertension. 2002;40:609–611. doi: 10.1161/01.HYP.0000036448.44066.53.
    1. Nathan DM, Davidson MB, DeFronzo RA, Heine RJ, Henry RR, Pratley R, Zinman B. Impaired fasting glucose and impaired glucose tolerance: implications for care. Diabetes Care. 2007;30:753–759. doi: 10.2337/dc07-9920.
    1. Bergman RN. Lilly Lecture 1989. Toward Physiological Understanding of Glucose Tolerance. Minimal-Model Approach. Diabetes. 1989;38:1512–1527. doi: 10.2337/diabetes.38.12.1512.
    1. Boesch C, Slotboom J, Hoppeler H, Kreis R. In vivo determination of intra-myocellular lipids in human muscle by means of localized 1H-MR-spectroscopy. Magn Reson Med. 1997;37:484–493. doi: 10.1002/mrm.1910370403.
    1. Schick F, Eismann B, Jung WI, Bongers H, Bunse M, Lutz O. Comparison of localized proton NMR signals of skeletal muscle and fat tissue in vivo: two lipid compartments in muscle tissue. Magn Reson Med. 1993;29:158–167. doi: 10.1002/mrm.1910290203.
    1. Szczepaniak LS, Babcock EE, Schick F, Dobbins RL, Garg A, Burns DK, McGarry JD, Stein DT. Measurement of intracellular triglyceride stores by H spectroscopy: validation in vivo. Am J Physiol. 1999;276:E977–E989.
    1. Szczepaniak LS, Dobbins RL, Stein DT, McGarry JD. Bulk magnetic susceptibility effects on the assessment of intra- and extramyocellular lipids in vivo. Magn Reson Med. 2002;47:607–610. doi: 10.1002/mrm.10086.
    1. Szczepaniak LS, Dobbins RL, Metzger GJ, Sartoni-D’Ambrosia G, Arbique D, Vongpatanasin W, Unger R, Victor RG. Myocardial triglycerides and systolic function in humans: in vivo evaluation by localized proton spectroscopy and cardiac imaging. Magn Reson Med. 2003;49:417–423. doi: 10.1002/mrm.10372.
    1. Szczepaniak LS, Nurenberg P, Leonard D, Browning JD, Reingold JS, Grundy S, Hobbs HH, Dobbins RL. Magnetic resonance spectroscopy to measure hepatic triglyceride content: prevalence of hepatic steatosis in the general population. Am J Physiol Endocrinol Metab. 2005;288:E462–E468. doi: 10.1152/ajpendo.00064.2004.
    1. McGavock JM, Victor RG, Unger RH, Szczepaniak LS. Adiposity of the heart, revisited. Ann Intern Med. 2006;144:517–524. doi: 10.7326/0003-4819-144-7-200604040-00011.
    1. McGavock JM, Lingvay I, Zib I, Tillery T, Salas N, Unger R, Levine BD, Raskin P, Victor RG, Szczepaniak LS. Cardiac steatosis in diabetes mellitus: a 1H-magnetic resonance spectroscopy study. Circulation. 2007;116:1170–1175. doi: 10.1161/CIRCULATIONAHA.106.645614.
    1. Reingold JS, McGavock JM, Kaka S, Tillery T, Victor RG, Szczepaniak LS. Determination of triglyceride in the human myocardium by magnetic resonance spectroscopy: reproducibility and sensitivity of the method. Am J Physiol Endocrinol Metab. 2005;289:E935–E939. doi: 10.1152/ajpendo.00095.2005.
    1. Lingvay I, Raskin P, Szczepaniak LS. The fatty hearts of patients with diabetes. Nat Rev Cardiol. 2009;6:268–269. doi: 10.1038/nrcardio.2009.30.
    1. Lingvay I, Esser V, Legendre JL, Price AL, Wertz KM, Adams-Huet B, Zhang S, Unger RH, Szczepaniak LS. Noninvasive quantification of pancreatic fat in humans. J Clin Endocrinol Metab. 2009;94:4070–4076. doi: 10.1210/jc.2009-0584.
    1. Abate N, Garg A, Peshock RM, Stray-Gundersen J, Grundy SM. Relationships of generalized and regional adiposity to insulin sensitivity in men. J Clin Invest. 1995;96:88–98. doi: 10.1172/JCI118083.
    1. Eriksson JW, Jansson PA, Carlberg B, Hagg A, Kurland L, Svensson MK, Ahlstrom H, Strom C, Lonn L, Ojbrandt K, Johansson L, Lind L. Hydrochlorothiazide, but not candesartan, aggravates insulin resistance and causes visceral and hepatic fat accumulation: the Mechanisms for the Diabetes Preventing Effect of Candesartan (MEDICA) Study. Hypertension. 2008;52:1030–1037. doi: 10.1161/HYPERTENSIONAHA.108.119404.
    1. Sharma AM. Does it matter how blood pressure is lowered in patients with metabolic risk factors? J Am Soc Hypertens. 2008. pp. S23–S29.
    1. Bakris G, Molitch M, Hewkin A, Kipnes M, Sarafidis P, Fakouhi K, Bacher P, Sowers J. Differences in glucose tolerance between fixed-dose antihypertensive drug combinations in people with metabolic syndrome. Diab Care. 2006;29:2592–2597. doi: 10.2337/dc06-1373.

Source: PubMed

3
Prenumerera