Null tDCS Effects in a Sustained Attention Task: The Modulating Role of Learning

Noa Jacoby, Michal Lavidor, Noa Jacoby, Michal Lavidor

Abstract

The purpose of this study was to investigate sustained attention through modulation of the fronto-cerebral network with transcranial direct current stimulation (tDCS) in adults with attention-deficit/hyperactivity disorder (ADHD) and control participants. Thirty-seven participants (21 with ADHD) underwent three separate sessions (baseline, active tDCS, and sham) and performed the MOXO Continuous Performance Test (CPT). We applied double anodal stimulation of 1.8 mA tDCS for 20 min over the left and right dorsolateral prefrontal cortex (DLPFC), with the cathode over the cerebellum. Baseline session revealed significant differences between ADHD and control participants in the MOXO-CPT attention and hyperactivity scores, validating the MOXO as a diagnostic tool. However, there were no tDCS effects in most MOXO-CPT measures, except hyperactivity, due to a significant learning effect. We conclude that learning and repetition effects in cognitive tasks need to be considered when designing within-subjects tDCS experiments, as there are natural improvements between sessions that conceal potential stimulation effects.

Keywords: ADHD; CPT; DLPFC; cerebellum; learning-effect; sustained-attention; tDCS.

Figures

FIGURE 1
FIGURE 1
From left to right, schematic illustration of the experiment procedure; including the prior questionnaires, baseline measurements (MOXO-CPT and Wechsler block design), and the active/sham tDCS sessions (included PANAS questioner and MOXO-CPT).
FIGURE 2
FIGURE 2
Illustration of the stimui in the MOXO-CPT task. From left to right, the target card and the adequate response, example of the visual distractors with the corresponding auditory stimului, and the non-target stimuli cards. The illustration was provided by Neurotech Solutions Ltd.

References

    1. Adler L. A., Spencer T. J., Levine L. R., Ramsey J. L., Tamura R., Kelsey D., et al. (2008). Functional outcomes in the treatment of adults with ADHD. J. Atten. Disord. 11 720–727. 10.1177/1087054707308490
    1. Alvarez J. A., Emory E. (2006). Executive function and the frontal lobes: a meta-analytic review. Neuropsychol. Rev. 16 17–42. 10.1007/s11065-006-9002-x
    1. American Psychiatric Association [APA] (2013). DSM-V: Diagnostic and Statistical Manual of Mental Disorders, 5th Edn Washington, DC: American Psychiatric Association.
    1. American Psychiatric Association [APA] (2000). Diagnostic and Statistical Manual of Mental Disorders (DSM-IV-TR). Washington, DC: American Psychiatric Association.
    1. Bandeira I. D., Guimarães R. S. Q., Jagersbacher J. G., Barretto T. L., de Jesus-Silva J. R., Santos S. N., et al. (2016). Transcranial direct current stimulation in children and adolescents with attention-deficit/hyperactivity disorder (ADHD) a pilot study. J. Child Neurol. 31 918–924. 10.1177/0883073816630083
    1. Barkley R. A. (1997). Inhibition, sustained attention, and executive functions: constructing a unifying theory of ADHD. Psychol. Bull. 121 65–94. 10.1037/0033-2909.121.1.65
    1. Barkley R. A. (2002). Major life activity and health outcomes associated with attention-deficit/hyperactivity disorder. J. Clin. Psychiatry 63 10–15.
    1. Barkley R. A. (2010). Differential diagnosis of adults with ADHD: the role of executive function and self-regulation. J. Clin. Psychiatry 71 17–17. 10.4088/JCP.9066tx1c
    1. Barkley R. A. (2011a). Barkley Deficits in Executive Functioning Scale (BDEFS). New York City, NY: Guilford Press.
    1. Barkley R. A. (2011b). “Executive functioning and self-regulation in adults with ADHD: nature, assessment and treatment,” in Proceedings of the Symposium at Children and Adults with ADHD (CHADD) Conference, Orlando, FL.
    1. Barkley R. A. (2012). Executive Functions: What They Are, How They Work, and Why They Evolved. New York, NY: Guilford Press.
    1. Barkley R. A., Murphy K. R., Fischer M. (2008). ADHD in Adults: What the Science Says. New York, NY: Guilford Press.
    1. Berger I., Goldzweig G. (2010). Objective measures of attention-deficit/hyperactivity disorder: a pilot study. Isr. Med. Assoc. J. 12 531–535.
    1. Bortoletto M., Pellicciari M. C., Rodella C., Miniussi C. (2015). The interaction with task-induced activity is more important than polarization: a tDCS study. Brain Stimul. 8 269–276. 10.1016/j.brs.2014.11.006
    1. Brown T. E. (2013). A New Understanding of ADHD in Children and Adults, Executive Function Impairment. New York, NY: Routledge.
    1. Castellanos F. X., Proal E. (2012). Large-scale brain systems in ADHD: beyond the prefrontal–striatal model. Trends Cogn. Sci. 16 17–26. 10.1016/j.tics.2011.11.007
    1. Castellanos F. X., Sonuga-Barke E. J., Milham M. P., Tannock R. (2006). Characterizing cognition in ADHD: beyond executive dysfunction. Trends Cogn. Sci. 10 117–123. 10.1016/j.tics.2006.01.011
    1. Castells X., Cunill R., Capellà D. (2013). Treatment discontinuation with methylphenidate in adults with attention deficit hyperactivity disorder: a meta-analysis of randomized clinical trials. Eur. J. Clin. Pharmacol. 69 347–356. 10.1007/s00228-012-1390-7
    1. Childress A. C., Sallee F. R. (2014). Attention-deficit/hyperactivity disorder with inadequate response to stimulants: approaches to management. CNS Drugs 28 121–129. 10.1007/s40263-013-0130-6
    1. Clavenna A., Bonati M. (2014). Safety of medicines used for ADHD in children: a review of published prospective clinical trials. Arch. Dis. Child. 99 866–872. 10.1136/archdischild-2013-304170
    1. Coffman B. A., Clark V. P., Parasuraman R. (2014). Battery powered thought: enhancement of attention, learning, and memory in healthy adults using transcranial direct current stimulation. Neuroimage 85 895–908. 10.1016/j.neuroimage.2013.07.083
    1. Cortese S., Kelly C., Chabernaud C., Proal E., Di Martino A., Milham M. P., et al. (2012). Towards systems neuroscience of ADHD: a meta-analysis if 55 fMRI studies. Am. J. Psychiatry 169 1038–1055. 10.1176/appi.ajp.2012.11101521
    1. Cosmo C., Ferreira C., Miranda J. G. V., do Rosário R. S., Baptista A. F., Montoya P., et al. (2015). Spreading effect of tDCS in individuals with attention-deficit/hyperactivity disorder as shown by functional cortical networks: a randomized, double-blind, sham-controlled trial. Front. Psychiatry 6:111. 10.3389/fpsyt.2015.00111
    1. Craig S. G., Davies G., Schibuk L., Weiss M. D., Hechtman L. (2015). Long-term effects of stimulant treatment for ADHD: What can we tell our patients? Curr. Dev. Disord. Rep. 2 1–9. 10.1007/s40474-015-0039-5
    1. Cubillo A., Halari R., Smith A., Taylor E., Rubia K. (2012). A review of fronto-striatal and fronto-cortical brain abnormalities in children and adults with attention deficit hyperactivity disorder (ADHD) and new evidence for dysfunction in adults with ADHD during motivation and attention. Cortex 48 194–215. 10.1016/j.cortex.2011.04.007
    1. DuPaul G. J., Weyandt L. L., O’Dell S. M., Varejao M. (2009). College students with ADHD: current status and future directions. J. Atten. Disord. 13 234–250. 10.1177/1087054709340650
    1. Ek A., Isaksson G. (2013). How adults with ADHD get engaged in and perform everyday activities. Scand. J. Occup. Ther. 20 282–291. 10.3109/11038128.2013.799226
    1. Elliott R. (2003). Executive functions and their disorders imaging in clinical neuroscience. Br. Med. Bull. 65 49–59. 10.1093/bmb/65.1.49
    1. Fayyad J., De Graff R., Kessler R., Alonso J., Angermeyer M., Demyttenaere K., et al. (2007). Cross-national prevalence and correlates of adult attention-deficit hyperactivity disorder. Br. J. Psychiatry 190 402–409. 10.1192/bjp.bp.106.034389
    1. Feldman H. M., Reiff M. I. (2014). Attention deficit–hyperactivity disorder in children and adolescents. N. Engl. J. Med. 370 838–846. 10.1056/NEJMcp1307215
    1. Forster S., Robertson D. J., Jennings A., Asherson P., Lavie N. (2014). Plugging the attention deficit: perceptual load counters increased distraction in ADHD. Neuropsychology 28 91–97. 10.1037/neu0000020
    1. Grossman E. S., Hoffman Y. S., Berger I., Zivotofsky A. Z. (2015). Beating their chests: university students with ADHD demonstrate greater attentional abilities on an inattentional blindness paradigm. Neuropsychology 29 882–887. 10.1037/neu0000189
    1. Jacobson L., Koslowsky M., Lavidor M. (2012). tDCS polarity effects in motor and cognitive domains: a meta-analytical review. Exp. Brain Res. 216 1–10. 10.1007/s00221-011-2891-9
    1. Johnston C., Mash E. J., Miller N., Ninowski J. E. (2012). Parenting in adults with attention-deficit/hyperactivity disorder (ADHD). Clin. Psychol. Rev. 32 215–228. 10.1016/j.cpr.2012.01.007
    1. Jospe K., Flöel A., Lavidor M. (2018). The interaction between embodiment and empathy in facial expression recognition. Soc. Cogn. Affect. Neurosci. 13 203–215. 10.1093/scan/nsy005
    1. Kessler R. C., Adler L., Ames M., Demler O., Faraone S., Hiripi E. V. A., et al. (2005). The world health organization adult ADHD self-report scale (ASRS): a short screening scale for use in the general population. Psychol. Med. 35 245–256. 10.1017/S0033291704002892
    1. Kooij J. S., Buitelaar J. K., Furer J. W., Rijnders C. A. T., Hodiamont P. P. (2005). Internal and external validity of attention-deficit hyperactivity disorder in a population-based sample of adults. Psychol. Med. 35 817–827. 10.1017/S003329170400337X
    1. Krain A. L., Castellanos F. X. (2006). Brain development and ADHD. Clin. Psychol. Rev. 26 433–444. 10.1016/j.cpr.2006.01.005
    1. Kuo M. F., Paulus W., Nitsche M. A. (2014). Therapeutic effects of non-invasive brain stimulation with direct currents (tDCS) in neuropsychiatric diseases. Neuroimage 85 948–960. 10.1016/j.neuroimage.2013.05.117
    1. Lavie N. (1995). Perceptual load as a necessary condition for selective attention. J. Exp. Psychol. Hum. Percept. Perform. 21 451–468. 10.1037/0096-1523.21.3.451
    1. Lavie N. (2005). Distracted and confused?: selective attention under load. Trends Cogn. Sci. 9 75–82. 10.1016/j.tics.2004.12.004
    1. Lavie N., Hirst A., De Fockert J. W., Viding E. (2004). Load theory of selective attention and cognitive control. J. Exp. Psychol. Gen. 133 339–354. 10.1037/0096-3445.133.3.339
    1. Lijffijt M., Kenemans J. L., Verbaten M. N., van Engeland H. (2005). A meta-analytic review of stopping performance in attention-deficit/hyperactivity disorder: deficient inhibitory motor control? J. Abnorm. Psychol. 114 216–222. 10.1037/0021-843X.114.2.216
    1. Mannarelli D., Pauletti C., De Lucia M. C., Delle Chiaie R., Bersani F. S., Spagnoli F., et al. (2016). Effects of cerebellar transcranial direct current stimulation on attentional processing of the stimulus: evidence from an event-related potentials study. Neuropsychologia 84 127–135. 10.1016/j.neuropsychologia.2016.02.002
    1. Mannuzza S., Klein R. G., Moulton J. L., III (2003). Persistence of attention-deficit/hyperactivity disorder into adulthood: what have we learned from the prospective follow-up studies? J. Atten. Disord. 7 93–100. 10.1177/108705470300700203
    1. Maxwell A. E. (1959). A factor analysis of the Wechsler intelligence scale for children. Br. J. Educ. Psychol. 29 237–241. 10.1111/j.2044-8279.1959.tb01504.x
    1. Miyake A., Friedman N. P., Emerson M. J., Witzki A. H., Howerter A., Wager T. D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: a latent variable analysis. Cogn. Psychol. 41 49–100. 10.1006/cogp.1999.0734
    1. Nelson J. T., McKinley R. A., Golob E. J., Warm J. S., Parasuraman R. (2014). Enhancing vigilance in operators with prefrontal cortex transcranial direct current stimulation (tDCS). Neuroimage 85 909–917. 10.1016/j.neuroimage.2012.11.061
    1. Nitsche M. A., Paulus W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J. Physiol. 527 633–639. 10.1111/j.1469-7793.2000.t01-1-00633.x
    1. Nitsche M. A., Schauenburg A., Lang N., Liebetanz D., Exner C., Paulus W., et al. (2003). Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human. J. Cogn. Neurosci. 15 619–626. 10.1162/089892903321662994
    1. Oken B. S., Salinsky M. C., Elsas S. M. (2006). Vigilance, alertness, or sustained attention: physiological basis and measurement. Clin. Neurophysiol. 117 1885–1901. 10.1016/j.clinph.2006.01.017
    1. Reteig L. C., Talsma L. J., van Schouwenburg M. R., Slagter H. A. (2017). Transcranial electrical stimulation as a tool to enhance attention. J. Cogn. Enhanc. 1 10–25. 10.1007/s41465-017-0010-y
    1. Romei V., Thut G., Silvanto J. (2016). Information-based approaches of noninvasive transcranial brain stimulation. Trends Neurosci. 39 782–795. 10.1016/j.tins.2016.09.001
    1. Schneider M. F., Krick C. M., Retz W., Hengesch G., Retz-Junginger P., Reith W., et al. (2010). Impairment of fronto-striatal and parietal cerebral networks correlates with attention deficit hyperactivity disorder (ADHD) psychopathology in adults—a functional magnetic resonance imaging (fMRI) study. Psychiatry Res. 183 75–84. 10.1016/j.pscychresns.2010.04.005
    1. Sela T., Kilim A., Lavidor M. (2012). Transcranial alternating current stimulation increases risk-taking behavior in the balloon analog risk task. Front. Neurosci. 6:22 10.3389/fnins.2012.00022
    1. Shaw M., Hodgkins P., Caci H., Young S., Kahle J., Woods A. G., et al. (2012). A systematic review and analysis of long-term outcomes in attention deficit hyperactivity disorder: effects of treatment and non-treatment. BMC Med. 10:99. 10.1186/1741-7015-10-99
    1. Silvanto J., Cattaneo Z. (2017). Common framework for “virtual lesion” and state-dependent TMS: the facilitatory/suppressive range model of online TMS effects on behavior. Brain Cogn. 119 32–38. 10.1016/j.bandc.2017.09.007
    1. Snowball A., Tachtsidis I., Popescu T., Thompson J., Delazer M., Zamarian L., et al. (2013). Long-term enhancement of brain function and cognition using cognitive training and brain stimulation. Curr. Biol. 23 987–992. 10.1016/j.cub.2013.04.045
    1. Soff C., Sotnikova A., Christiansen H., Becker K., Siniatchkin M. (2017). Transcranial direct current stimulation improves clinical symptoms in adolescents with attention deficit hyperactivity disorder. J. Neural Transm. 124 133–144. 10.1007/s00702-016-1646-y
    1. Soltaninejad Z., Nejati V., Ekhtiari H. (2015). Effect of anodal and cathodal transcranial direct current stimulation on DLPFC on modulation of inhibitory control in ADHD. J. Atten. Disord. 10.1177/1087054715618792 [Epub ahead of print].
    1. Sotnikova A., Soff C., Tagliazucchi E., Becker K., Siniatchkin M. (2017). Transcranial direct current stimulation modulates neuronal networks in attention deficit hyperactivity disorder. Brain Topogr. 30 656–672. 10.1007/s10548-017-0552-4
    1. Stagg C. J., Lin R. L., Mezue M., Segerdahl A., Kong Y., Xie J., et al. (2013). Widespread modulation of cerebral perfusion induced during and after transcranial direct current stimulation applied to the left dorsolateral prefrontal cortex. J. Neurosci. 33 11425–11431. 10.1523/JNEUROSCI.3887-12.2013
    1. Watson D., Clark L. A., Tellegen A. (1988). Development and validation of brief measures of positive and negative affect: the PANAS scales. J. Pers. Soc. Psychol. 54 1063–1070. 10.1037/0022-3514.54.6.1063
    1. Weiss M., Lavidor M. (2012). When less is more: evidence for a facilitative cathodal tDCS effect in attentional abilities. J. Cogn. Neurosci. 24 1826–1833. 10.1162/jocn_a_00248

Source: PubMed

3
Prenumerera