Bi-frontal transcranial alternating current stimulation in the ripple range reduced overnight forgetting

Géza Gergely Ambrus, Alberto Pisoni, Annika Primaßin, Zsolt Turi, Walter Paulus, Andrea Antal, Géza Gergely Ambrus, Alberto Pisoni, Annika Primaßin, Zsolt Turi, Walter Paulus, Andrea Antal

Abstract

High frequency oscillations in the hippocampal structures recorded during sleep have been proved to be essential for long-term episodic memory consolidation in both animals and in humans. The aim of this study was to test if transcranial Alternating Current Stimulation (tACS) of the dorsolateral prefrontal cortex (DLPFC) in the hippocampal ripple range, applied bi-frontally during encoding, could modulate declarative memory performance, measured immediately after encoding, and after a night's sleep. An associative word-pair learning test was used. During an evening encoding phase, participants received 1 mA 140 Hz tACS or sham stimulation over both DLPFCs for 10 min while being presented twice with a list of word-pairs. Cued recall performance was investigated 10 min after training and the morning following the training session. Forgetting from evening to morning was observed in the sham condition, but not in the 140 Hz stimulation condition. 140 Hz tACS during encoding may have an effect on the consolidation of declarative material.

Keywords: declarative memory; ripple oscillation; tACS; transcranial alternating current stimulation; verbal associative learning.

Figures

Figure 1
Figure 1
The experimental procedure. At 10 p.m., during 10 min of active or sham tACS stimulation the participants saw a word list two times. After an unfilled break of 10 min the subjects were tested on cued recall of the second word. Next morning at 8 a.m. they were tested again on the cued recall of the second word. The subjects participated in the study according to a repeated measures design.
Figure 2
Figure 2
Performance on the associative word-pair learning task. (A) A paired t-test revealed a significant difference in performance in the sham stimulation condition, indicating forgetting. No such difference could be observed in the active stimulation condition. (B) The difference in the number of correctly recalled words from evening to morning was shown to be significantly different between the stimulation conditions. Error bars denote SEM.
Figure 3
Figure 3
Difference in performance between the evening and morning sessions, when data from subjects performing under 60% in the training session of either sham or active stimulation session are retrospectively removed. Data from Marshall et al. (2006) shown for comparison. Error bars denote SEM.

References

    1. Antal A., Boros K., Poreisz C., Chaieb L., Terney D., Paulus W. (2008). Comparatively weak after-effects of transcranial alternating current stimulation (tACS) on cortical excitability in humans. Brain Stimul. 1, 97–105. 10.1016/j.brs.2007.10.001
    1. Antonenko D., Diekelmann S., Olsen C., Born J., Mölle M. (2013). Napping to renew learning capacity: enhanced encoding after stimulation of sleep slow oscillations. Eur. J. Neurosci. 37, 1142–1151. 10.1111/ejn.12118
    1. Axmacher N., Elger C. E., Fell J. (2008). Ripples in the medial temporal lobe are relevant for human memory consolidation. Brain 131, 1806–1817. 10.1093/brain/awn103
    1. Bai F., Watson D. R., Yu H., Shi Y., Yuan Y., Zhang Z. (2009). Abnormal resting-state functional connectivity of posterior cingulate cortex in amnestic type mild cognitive impairment. Brain Res. 1302, 167–174. 10.1016/j.brainres.2009.09.028
    1. Brignani D., Ruzzoli M., Mauri P., Miniussi C. (2013). Is transcranial alternating current stimulation effective in modulating brain oscillations? PLoS ONE 8:e56589. 10.1371/journal.pone.0056589
    1. Buzsáki G. (1989). Two-stage model of memory trace formation: a role for “noisy” brain states. Neuroscience 31, 551–570. 10.1016/0306-4522(89)90423-5
    1. Buzsáki G. (1998). Memory consolidation during sleep: a neurophysiological perspective. J. Sleep Res. 7, 17–23. 10.1046/j.1365-2869.7.s1.3.x
    1. Cabeza R., Nyberg L. (2000). Neural bases of learning and memory: functional neuroimaging evidence. Curr. Opin. Neurol. 13, 415–421. 10.1097/00019052-200008000-00008
    1. Clemens Z., Mölle M., Eross L., Barsi P., Halász P., Born J. (2007). Temporal coupling of parahippocampal ripples, sleep spindles and slow oscillations in humans. Brain 130, 2868–2878. 10.1093/brain/awm146
    1. Frankland P. W., Bontempi B. (2005). The organization of recent and remote memories. Nat. Rev. Neurosci. 6, 119–130. 10.1038/nrn1607
    1. Girardeau G., Benchenane K., Wiener S. I., Buzsáki G., Zugaro M. B. (2009). Selective suppression of hippocampal ripples impairs spatial memory. Nat. Neurosci. 12, 1222–1223. 10.1038/nn.2384
    1. Grenier F., Timofeev I., Steriade M. (2001). Focal synchronization of ripples (80–200 Hz) in neocortex and their neuronal correlates. J. Neurophysiol. 86, 1884–1898. Available online at:
    1. Helfrich R. F., Schneider T. R., Rach S., Trautmann-Lengsfeld S. A., Engel A. K., Herrmann C. S. (2014). Entrainment of brain oscillations by transcranial alternating current stimulation. Curr. Biol. 24, 333–339. 10.1016/j.cub.2013.12.041
    1. Henke K. (2010). A model for memory systems based on processing modes rather than consciousness. Nat. Rev. Neurosci. 11, 523–532. 10.1038/nrn2850
    1. Jadhav S. P., Kemere C., German P. W., Frank L. M. (2012). Awake hippocampal sharp-wave ripples support spatial memory. Science 336, 1454–1458. 10.1126/science.1217230
    1. Javadi A. H., Walsh V. (2012). Transcranial direct current stimulation (tDCS) of the left dorsolateral prefrontal cortex modulates declarative memory. Brain Stimul. 5, 231–241. 10.1016/j.brs.2011.06.007
    1. Kirov R., Weiss C., Siebner H. R., Born J., Marshall L. (2009). Slow oscillation electrical brain stimulation during waking promotes EEG theta activity and memory encoding. Proc. Natl. Acad. Sci. U.S.A. 106, 15460–15465. 10.1073/pnas.0904438106
    1. Kuhl B. A., Shah A. T., DuBrow S., Wagner A. D. (2010). Resistance to forgetting associated with hippocampus-mediated reactivation during new learning. Nat. Neurosci. 13, 501–506. 10.1038/nn.2498
    1. Lang N., Siebner H. R., Ward N. S., Lee L., Nitsche M. A., Paulus W., et al. . (2005). How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain? Eur. J. Neurosci. 22, 495–504. 10.1111/j.1460-9568.2005.04233.x
    1. Logothetis N. K., Eschenko O., Murayama Y., Augath M., Steudel T., Evrard H. C., et al. . (2012). Hippocampal-cortical interaction during periods of subcortical silence. Nature 491, 547–553. 10.1038/nature11618
    1. Manenti R., Cotelli M., Robertson I. H., Miniussi C. (2012). Transcranial brain stimulation studies of episodic memory in young adults, elderly adults and individuals with memory dysfunction: a review. Brain Stimul. 5, 103–109. 10.1016/j.brs.2012.03.004
    1. Marshall L., Helgadóttir H., Mölle M., Born J. (2006). Boosting slow oscillations during sleep potentiates memory. Nature 444, 610–613. 10.1038/nature05278
    1. Marshall L., Kirov R., Brade J., Mölle M., Born J. (2011). Transcranial electrical currents to probe EEG brain rhythms and memory consolidation during sleep in humans. PLoS ONE 6:e16905. 10.1371/journal.pone.0016905
    1. Marshall L., Mölle M., Hallschmid M., Born J. (2004). Transcranial direct current stimulation during sleep improves declarative memory. J. Neurosci. 24, 9985–9992. 10.1523/JNEUROSCI.2725-04.2004
    1. Moliadze V., Antal A., Paulus W. (2010). Boosting brain excitability by transcranial high frequency stimulation in the ripple range. J. Physiol. 588, 4891–4904. 10.1113/jphysiol.2010.196998
    1. Moliadze V., Atalay D., Antal A., Paulus W. (2012). Close to threshold transcranial electrical stimulation preferentially activates inhibitory networks before switching to excitation with higher intensities. Brain Stimul. 5, 505–511. 10.1016/j.brs.2011.11.004
    1. Murray L. J., Ranganath C. (2007). The dorsolateral prefrontal cortex contributes to successful relational memory encoding. J. Neurosci. 27, 5515–5522. 10.1523/JNEUROSCI.0406-07.2007
    1. Neuling T., Rach S., Herrmann C. S. (2013). Orchestrating neuronal networks: sustained after-effects of transcranial alternating current stimulation depend upon brain states. Front. Hum. Neurosci. 7:161. 10.3389/fnhum.2013.00161
    1. Nokia M. S., Mikkonen J. E., Penttonen M., Wikgren J. (2012). Disrupting neural activity related to awake-state sharp wave-ripple complexes prevents hippocampal learning. Front. Behav. Neurosci. 6:84. 10.3389/fnbeh.2012.00084
    1. O'Neill J., Pleydell-Bouverie B., Dupret D., Csicsvari J. (2010). Play it again: reactivation of waking experience and memory. Trends Neurosci. 33, 220–229. 10.1016/j.tins.2010.01.006
    1. Paulus W. (2011). Transcranial electrical stimulation (tES-tDCS; tRNS, tACS) methods. Neuropsychol. Rehabil. 21, 602–617. 10.1080/09602011.2011.557292
    1. Pogosyan A., Gaynor L. D., Eusebio A., Brown P. (2009). Boosting cortical activity at beta-band frequencies slows movement in humans. Curr. Biol. 19, 1637–1641. 10.1016/j.cub.2009.07.074
    1. Polanía R., Nitsche M. A., Korman C., Batsikadze G., Paulus W. (2012). The importance of timing in segregated theta phase-coupling for cognitive performance. Curr. Biol. 22, 1314–1318. 10.1016/j.cub.2012.05.021
    1. Sahlem G. L., Badran B. W., Halford J. J., Williams N. R., Korte J. E., Leslie K., et al. (2015). Oscillating square wave transcranial direct current stimulation (tdcs) delivered during slow wave sleep does not improve declarative memory more than sham: a randomized sham controlled crossover study. Brain Stimul. 8, 528–534. 10.1016/j.brs.2015.01.414
    1. Sandrini M., Cappa S. F., Rossi S., Rossini P. M., Miniussi C. (2003). The role of prefrontal cortex in verbal episodic memory: rTMS evidence. J. Cogn. Neurosci. 15, 855–861. 10.1162/089892903322370771
    1. Sirota A., Csicsvari J., Buhl D., Buzsáki G. (2003). Communication between neocortex and hippocampus during sleep in rodents. Proc. Natl. Acad. Sci. U.S.A. 100, 2065–2069. 10.1073/pnas.0437938100
    1. Staba R. J., Wilson C. L., Fried I., Engel J. (2002). Single neuron burst firing in the human hippocampus during sleep. Hippocampus 12, 724–734. 10.1002/hipo.10026
    1. Strüber D., Rach S., Trautmann-Lengsfeld S. A., Engel A. K., Herrmann C. S. (2014). Antiphasic 40 Hz oscillatory current stimulation affects bistable motion perception. Brain Topogr. 27, 158–171. 10.1007/s10548-013-0294-x
    1. Sullivan D., Csicsvari J., Mizuseki K., Montgomery S., Diba K., Buzsáki G. (2011). Relationships between hippocampal sharp waves, ripples, and fast gamma oscillation: influence of dentate and entorhinal cortical activity. J. Neurosci. 31, 8605–8616. 10.1523/JNEUROSCI.0294-11.2011
    1. Takahashi E., Ohki K., Kim D.-S. (2007). Diffusion tensor studies dissociated two fronto-temporal pathways in the human memory system. Neuroimage 34, 827–838. 10.1016/j.neuroimage.2006.10.009
    1. Varga C., Golshani P., Soltesz I. (2012). Frequency-invariant temporal ordering of interneuronal discharges during hippocampal oscillations in awake mice. Proc. Natl. Acad. Sci. U.S.A. 109, E2726–E2734. 10.1073/pnas.1210929109
    1. Vossen A., Gross J., Thut G. (2014). Alpha power increase after transcranial alternating current stimulation at alpha frequency (α-tacs) reflects plastic changes rather than entrainment. Brain Stim. 8, 499–508. 10.1016/j.brs.2014.12.004
    1. Zaehle T., Rach S., Herrmann C. S. (2010). Transcranial alternating current stimulation enhances individual alpha activity in human EEG. PLoS ONE 5:e13766. 10.1371/journal.pone.0013766
    1. Zaehle T., Sandmann P., Thorne J. D., Jäncke L., Herrmann C. (2011). Transcranial direct current stimulation of the prefrontal cortex modulates working memory performance: combined behavioural and electrophysiological evidence. BMC Neurosci. 12:2. 10.1186/1471-2202-12-2

Source: PubMed

3
Prenumerera