Guidance from an NIH workshop on designing, implementing, and reporting clinical studies of soy interventions

Marguerite A Klein, Richard L Nahin, Mark J Messina, Jeanne I Rader, Lilian U Thompson, Thomas M Badger, Johanna T Dwyer, Young S Kim, Carol H Pontzer, Pamela E Starke-Reed, Connie M Weaver, Marguerite A Klein, Richard L Nahin, Mark J Messina, Jeanne I Rader, Lilian U Thompson, Thomas M Badger, Johanna T Dwyer, Young S Kim, Carol H Pontzer, Pamela E Starke-Reed, Connie M Weaver

Abstract

The NIH sponsored a scientific workshop, "Soy Protein/Isoflavone Research: Challenges in Designing and Evaluating Intervention Studies," July 28-29, 2009. The workshop goal was to provide guidance for the next generation of soy protein/isoflavone human research. Session topics included population exposure to soy; the variability of the human response to soy; product composition; methods, tools, and resources available to estimate exposure and protocol adherence; and analytical methods to assess soy in foods and supplements and analytes in biologic fluids and other tissues. The intent of the workshop was to address the quality of soy studies, not the efficacy or safety of soy. Prior NIH workshops and an evidence-based review questioned the quality of data from human soy studies. If clinical studies are pursued, investigators need to ensure that the experimental designs are optimal and the studies properly executed. The workshop participants identified methodological issues that may confound study results and interpretation. Scientifically sound and useful options for dealing with these issues were discussed. The resulting guidance is presented in this document with a brief rationale. The guidance is specific to soy clinical research and does not address nonsoy-related factors that should also be considered in designing and reporting clinical studies. This guidance may be used by investigators, journal editors, study sponsors, and protocol reviewers for a variety of purposes, including designing and implementing trials, reporting results, and interpreting published epidemiological and clinical studies.

References

    1. Heindel JJ, vom Saal FS. Meeting report: batch-to-batch variability in estrogenic activity in commercial animal diets: importance and approaches for laboratory animal research. Environ Health Perspect. 2008;116:389–93.
    1. Santell RC, Kieu N, Helferich WG. Genistein inhibits growth of estrogen-independent human breast cancer cells in culture but not in athymic mice. J Nutr. 2000;130:1665–9.
    1. Ju YH, Allred CD, Allred KF, Karko KL, Doerge DR, Helferich WG. Physiological concentrations of dietary genistein dose-dependently stimulate growth of estrogen-dependent human breast cancer (mcf-7) tumors implanted in athymic nude mice. J Nutr. 2001;131:2957–62.
    1. Balk E, Chung M, Chew P, Pi S, Raman G, Kupelnick B, Tatsioni A, Sun Y, Wolk V, et al. Effects of soy on health outcomes. Evidence Report/Technology Assessment No. 126 (prepared by Tufts-New England Medical Center Evidence-Based Practice Center under contract no. 290–02–0022.) AHRQ Publication No. 05–E024–2. Rockville (MD): Agency for Healthcare Research and Quality. August 2005. [cited 2009 25 Aug]. Available from: .
    1. Erdman JW Jr, Badger TM, Lampe JW, Setchell KDR, Messina M. Not all soy products are created equal: caution needed in interpretation of research results. J Nutr. 2004;134:S1229–33.
    1. Gu L, House SE, Prior RL, Fang N, Ronis MJJ, Clarkson TB, Wilson ME, Badger TM. Metabolic phenotype of isoflavones differ among females rats, pigs, monkeys, and women. J Nutr. 2006;136:1215–21.
    1. Warri A, Saarinen NM, Makela S, Hilakivi-Clarke L. The role of early life genistein exposures in modifying breast cancer risk. Br J Cancer. 2008;98:1485–93.
    1. Korde LA, Wu AH, Fears T, Nomura AMY, West DW, Kolonel LN, Pike MC, Hoover RN, Ziegler RG. Childhood soy intake and breast cancer risk in Asian American women. Cancer Epidemiol Biomarkers Prev. 2009;18:1050–9.
    1. Lee SA, Shu XO, Li H, Yang G, Cai H, Wen W, Ji B-T, Gao J, Gao Y-T, et al. Adolescent and adult soy food intake and breast cancer risk: results from the Shanghai Women's Health Study. Am J Clin Nutr. 2009;89:1920–6.
    1. Shu X-O, Jin F, Dai Q, Wen W, Potter JD, Kushi LH, Ruan Z, Gao Y-T, Zheng W. Soyfood intake during adolescence and subsequent risk of breast cancer among Chinese women. Cancer Epidemiol Biomarkers Prev. 2001;10:483–8.
    1. Wu AH, Wan P, Hankin J, Tseng C-C, Yu MC, Pike MC. Adolescent and adult soy intake and risk of breast cancer in Asian-Americans. Carcinogenesis. 2002;23:1491–6.
    1. Gagnier JJ, Boon H, Rochon P, Moher D, Barnes J, Bombardier C, for the CONSORT Group. Recommendations for reporting randomized controlled trials of herbal interventions: explanation and elaboration. J Clin Epidemiol. 2006;59:1134–49.
    1. Gagnier JJ, Boon H, Rochon P, Moher D, Barnes J, Bombardier C for the CONSORT Group. Reporting randomized, controlled trials of herbal interventions: an elaborated CONSORT statement. Ann Intern Med. 2006;144:364–7.
    1. Murphy PA, Hu J, Barua K, Hauck CC. Group B saponins in soy products in the U.S. Department of Agriculture–Iowa State University isoflavone database and their comparison with isoflavone contents. J Agric Food Chem. 2008;56:8534–40.
    1. Krul ES, Gillies PJ. Translating nutrigenomics research into practice: the example of soy protein. In: Castle D, Ries N, editors. Nutrition and genomics: issues of ethics, law, regulation and communication. New York: Academic Press; 2009. p. 25–44.
    1. Fang N, Yu S, Badger TM. Comprehensive phytochemical profile of soy protein isolate. J Agric Food Chem. 2004;52:4012–20.
    1. Murphy PA, Song T, Buseman G, Barua K, Beecher GR, Trainer D, Holden J. Isoflavones in retail and institutional soy foods. J Agric Food Chem. 1999;47:2697–704.
    1. Barnes S. Nutritional genomics, polyphenols, diets, and their impact on dietetics. J Am Diet Assoc. 2008;108:1888–95.
    1. Coward L, Barnes NC, Setchell KDR, Barnes S. Genistein, daidzein, and their β-glycoside conjugates: antitumor isoflavones in soybean foods from American and Asian diets. J Agric Food Chem. 1993;41:1961–7.
    1. Kurzer MS. Soy consumption for reduction of menopausal symptoms. Inflammopharmacology. 2008;16:227–9.
    1. Chun OK, Chung SJ, Song WO. Estimated dietary flavonoid intake and major food sources of U.S. adults. J Nutr. 2007;137:1244–52.
    1. Chun OK, Chung SJ, Song WO. Urinary isoflavones and their metabolites validate the dietary isoflavone intakes in US Adults. J Am Diet Assoc. 2009;109:245–54.
    1. Maskarinec G, Singh S, Meng L, Franke AA. Dietary soy intake and urinary isoflavone excretion among women from a multiethnic population. Cancer Epidemiol Biomarkers Prev. 1998;7:613–9.
    1. Takata Y, Maskarinec G, Franke A, Nagata C, Shimizu H. A comparison of dietary habits among women in Japan and Hawaii. Public Health Nutr. 2004;7:319–26.
    1. Frankenfeld CL, Patteron RE, Kalhorn TF, Skor HE, Howald WN, Lampe JW. Validation of a soy food frequency questionnaire with plasma concentrations of isoflavones in US adults. J Am Diet Assoc. 2002;102:1407–13.
    1. Lammersfeld CA, King J, Walker S, Vashi PG, Grutsch JF, Lis CG, Gupta D. Prevalence, sources, and predictors of soy consumption in breast cancer. Nutr J. 2009;8:2.
    1. Somekawa Y, Chiguchi M, Ishibashi T, Aso T. Soy intake related to menopausal symptoms, serum lipids, and bone mineral density in postmenopausal Japanese women. Obstet Gynecol. 2001;97:109–15.
    1. Messina M, Nagata C, Wu AH. Estimated Asian adult soy protein and isoflavone intakes. Nutr Cancer. 2006;55:1–12.
    1. Surh J, Kim MJ, Koh E, Kim YKL, Kwon H. Estimated intakes of isoflavones and coumestrol in Korean population. Int J Food Sci Nutri. 2006;57:325–44.
    1. Chan SG, Ho SC, Kreiger N, Darlington G, So KF, Chong PYY. Dietary sources and determinants of soy isoflavone intake among midlife Chinese women in Hong Kong. J Nutr. 2007;137:2451–5.
    1. Chan SG, Ho SC, Kreiger N, Darlington G, Adlaf EM, So KF, Chong PYY. Validation of a food frequency questionnaire for assessing dietary soy isoflavone intake among midlife Chinese women in Hong Kong. J Nutr. 2008;138:567–73.
    1. Nagata C, Iwasa S, Shiraki M, Ueno T, Uchiyama S, Urata K, Sahashi Y, Shimizu H. Associations among maternal soy intake, isoflavone levels in urine and blood samples, and maternal and umbilical hormone concentrations (Japan). Cancer Causes Control. 2006;17:1107–13.
    1. Wakai K, Egami I, Kato K, Kawamura T, Tamakoshi A, Lin Y, Nakayama T, Wada M, Ohno Y. Dietary intake and sources of isoflavones among Japanese. Nutr Cancer. 1999;33:139–45.
    1. Thompson LU, Boucher BA, Liu Z, Cotterchio M, Kreiger N. Phytoestrogen content of foods consumed in Canada, including isoflavones, lignans, and coumestan. Nutr Cancer. 2006;54:184–201.
    1. Setchell KDR, Cole SJ. Variations in isoflavone levels in soy foods and soy protein isolates and issues related to isoflavone databases and food labeling. J Agric Food Chem. 2003;51:4146–55.
    1. SPINS, Inc. & Soyatech, LLC. Soyfoods. The U.S. Market 2009, A SPINS/Soyatech Study. April 2009 [cited 2009 25 Aug]. Available from: .
    1. Horn-Ross PL, Lee M, John EM, Koo J. Sources of phytoestrogen exposure among non-Asian women in California, USA. Cancer Causes Control. 2000;11:299–302.
    1. Horn-Ross PL, Barnes S, Kirk M, Coward L, Parsonnet J, Hiatt RA. Urinary phytoestrogen levels in young women from a multiethnic population. Cancer Epidemiol Biomarkers Prev. 1997;6:339–45.
    1. Horner NK, Kirstal AR, Prunty J, Skor HE, Potter JD, Lampe JW. Dietary determinants of plasma enterolactone. Cancer Epidemiol Biomarkers Prev. 2002;11:121–6.
    1. Liggins J, Bluck LJC, Runswick S, Atkinson C, Coward WA, Bingham SA. Daidzein and genistein contents of vegetables. Br J Nutr. 2000;84:717–25.
    1. Liggins J, Bluck LJC, Runswick S, Atkinson C, Coward WA, Bingham SA. Daidzein and genistein content of fruits and nuts. J Nutr Biochem. 2000;11:326–31.
    1. Liggins J, Mulligan A, Runswick S, Bingham SA. Daidzein and genistein content of cereals. Eur J Clin Nutr. 2002;56:961–6.
    1. Liggins J, Grimwood R, Bingham SA. Extraction and quantification of lignan phytoestrogens in food and human samples. Anal Biochem. 2000;287:102–9.
    1. Ritchie MR, Cummings JH, Morton MS, Steel CM, Bolton-Smith C, Riches AC. A newly constructed and validated isoflavone database for the assessment of total genistein and daidzein intake. Br J Nutr. 2006;95:204–13.
    1. Kuhnle GGC, Aquila CD, Aspinall SM, Runswick SA, Mulligan AA, Bingham SA. Phytoestrogen content of foods of animal origin: dairy products, eggs, meat, fish, and seafood. J Agric Food Chem. 2008;56:10099–104.
    1. Nutrition Business Journal. NBJ's supplement business report. 2009. [cited 2009 25 Aug]. Available from: .
    1. Yamamoto S, Sobue T, Sasaki S, Kobayashi M, Arai Y, Uehara M, Adlercreutz H, Watanabe S, Takahashi T, et al. Validity and reproducibility of a self-administered food-frequency questionnaire to assess isoflavone intake in a Japanese population in comparison with dietary records and blood and urine isoflavones. J Nutr. 2001;131:2741–7.
    1. Franke AA, Halm BM, Kakazu K, Li X, Custer LJ. Phytoestrogenic isoflavonoids in epidemiologic and clinical research. Drug Test Analysis. 2009;1:14–21.
    1. Rostagno MA, Vallares A, Guillamon E, Garcia-Lafuente A, Martinez JA. Sample preparation for the analysis of isoflavones from soybeans and soy foods. J Chromatogr A. 2009;1216:2–29.
    1. Schwartz H, Sontag G, Plumb J. Inventory of phytoestrogen databases. Food Chem. 2009;113:736–47.
    1. USDA, Agricultural Research Service. 2008. USDA Database for the Isoflavone Content of Selected Foods, Release 2.0 [cited 2009 Aug 25]. Available from: .
    1. Brandon DL, Friedman M. Immunoassays of soy proteins. J Agric Food Chem. 2002;50:6635–42.
    1. Delmonte P, Rader JI. Analysis of isoflavones in foods and dietary supplements. J AOAC Int. 2006;89:1138–46.
    1. Collison MW. Determination of total soy isoflavones in dietary supplements, supplement ingredients, and soy foods by high-performance liquid chromatography with ultraviolet detection: collaborative study. J AOAC Int. 2008;91:489–500.
    1. Griffith AP, Collison MW. Improved methods for the extraction and analysis of isoflavones from soy-containing foods and nutritional supplements by reversed-phase high-performance liquid chromatography and liquid chromatography-mass spectrometry. J Chromatogr A. 2001;913:397–413.
    1. Wang C-C, Prasain JK, Barnes S. Review of the methods used in the determination of phytoestrogens. J Chromatogr B Analyt Technol Biomed Life Sci. 2002;777:3–28.
    1. Badger TM, Ronis MJJ, Wolff G, Stanley S, Ferguson M, Shankar K, Simpson P, Jo C-H. Soy protein isolate reduces hepatosteatosis in yellow Avy/a mice without altering coat color phenotype. Exp Biol Med (Maywood). 2008;233:1242–54.
    1. Chen JR, Singhal R, Lazarenko OP, Liu X, Hogue WR, Badger TM, Ronis MJJ. Short term effects on bone quality associated with consumption of soy protein isolate and other dietary protein sources in rapidly growing female rats. Exp Biol Med (Maywood). 2008;233:1348–58.
    1. Chen JR, Lazarenk OP, Blackburn ML, Badeaux JV, Badger TM, Ronis MJJ. Infant formula promotes bone growth in neonatal piglets by enhancing osteoblastogenesis through bone morphogenic protein signaling. J Nutr. 2009;139:1839–47.
    1. Naciff JM, Hess KA, Overmann GJ, Torontali SM, Carr GJ, Tiesman JP, Foertsch LM, Richardson BD, Martinez JE, et al. Gene expression changes induced in the testis by transplacental exposure to high and low doses of 17α-ethynyl estradiol, genistein, or bisphenol A. Toxicol Sci. 2005;86:396–416.
    1. Singhal R, Shankar K, Badger TM, Ronis MJ. Hepatic gene expression following consumption of soy protein isolate in female Sprague-Dawley rats differs from that produced by 17β-estradiol treatment. J Endocrinol. 2009;202:141–52.
    1. van Ee JH. Soy constituents: modes of action in low-density lipoprotein management. Nutr Rev. 2009;67:222–34.
    1. Hakkak R, Korourian S, Shelnutt SR, Lensing S, Ronis MJJ, Badger TM. Diets containing whey proteins or soy protein isolate protect against 7,12-dimethylben (a)anthracene-induced mammary tumors in female rats. Cancer Epidemiol Biomarkers Prev. 2000;9:113–7.
    1. Nagarajan S, Burris RL, Stewart BW, Wilerson JE, Badger TM. Dietary soy protein isolate ameliorates atherosclerotic lesions in apolipoprotein E-deficient mice potentially by inhibiting monocyte chemoattractant protein-1 expression. J Nutr. 2008;138:332–7.
    1. Adams MR, Golden DL, Franke AA, Potter SM, Smith HS, Anthony MS. Dietary soy β-conglycinin (7S globulin) inhibits atherosclerosis in mice. J Nutr. 2004;134:511–6.
    1. Moriyama T, Kishimoto K, Nagai K, Urade R, Ogawa T, Utsumi S, Maruyama N, Maebuchi M. Soybean β-conglycinin diet suppresses serum triglyceride levels in normal and genetically obese mice by induction of β-oxidation, downregulation of fatty acid synthase, and inhibition of triglyceride absorption. Biosci Biotechnol Biochem. 2004;68:352–9.
    1. Adams MR, Anthony MS, Chen H, Clarkson TB. Replacement of dietary soy protein isolate with concentrates of soy 7S or 11S globulin has minimal or no effects on plasma lipoprotein profiles and biomarkers of coronary risk in monkeys. Atherosclerosis. 2008;196:76–80.
    1. Kohno M, Hirotsuka M, Kito M, Matsuzawa Y. Decreases in serum triacylglycerol and visceral fat mediated by dietary soybean β-conglycinin. J Atheroscler Thromb. 2006;13:247–55.
    1. Marín-Manzano MC, Ruiz R, Jiménez E, Rubio LA, Clemente A. Anti-carcinogenic soyabean Bowman-Birk inhibitors survive faecal fermentation in their active form and do not affect the microbiota composition in vitro. Br J Nutr. 2009;101:967–71.
    1. Dia VP, Torres S, de Lumen BO, Erdman JW, de Mejia EG. Presence of lunasin in plasma of men after soy protein consumption. J Agric Food Chem. 2009;57:1260–6.
    1. Noriega-Lopéz Tovar AR, Gonzalez-Granillo M, Hernández-Pando R, Escalante B, Santillán-Doherty P, Torres N. Pancreatic insulin secretion in rats fed soy protein high fat diet depends on the interaction between the amino acid pattern and isoflavones. J Biol Chem. 2007;282:20657–66.
    1. Ronis MJ, Chen Y, Badeaux J, Laurenzana E, Badger TM. Soy protein isolate induces CYP3A1 and CYP3A2 in prepubertal rats. Exp Biol Med (Maywood). 2006;231:60–9.
    1. Ronis MJ, Chen Y, Badeaux J, Badger TM. Dietary soy protein isolate attenuates metabolic syndrome in rats via effects on PPAR, LXR, and SREBP signaling. J Nutr. 2009;139:1431–8.
    1. Setchell KDR, Brown NM, Desai PB, Zimmer-Nechimias L, Wolfe B, Jakate AS, Creutziner V, Heubi JE. Bioavailability, disposition, and dose-response effects of soy isoflavones when consumed by healthy women at physiologically typical dietary intakes. J Nutr. 2003;133:1027–35.
    1. Faughnan MS, Hawdon A, Ah-Singh E, Brown J, Millward DJ, Cassidy A. Urinary isoflavone kinetics: the effect of age, gender, food matrix and chemical composition. Br J Nutr. 2004;91:567–74.
    1. Cassidy A. Dietary phyto-oestrogens: molecular mechanisms, bioavailability and importance to menopausal health. Nutr Res Rev. 2005;18:183–201.
    1. Vergne S, Bennetau-Pelissero C, Lamother V, Chantre P, Potier M, Asselineau J, Perez P, Durand M, Moore N, et al. Higher bioavailability of isoflavones after a single ingestion of a soya-based supplement than a soya-based food in young healthy males. Br J Nutr. 2008;99:333–44.
    1. Anupongsanugool E, Teekachunhatean S, Rojanasthien N, Pongsatha S, Sangdee C. Pharmacokinetics of isoflavones, daidzein and genistein, after ingestion of soy beverage compared with soy extract capsules in postmenopausal Thai women. BMC Clin Pharmacol. 2005; .
    1. Gardner CD, Chatterjee LM, Franke AA. Effects of isoflavone supplements vs. soy foods on blood concentrations of genistein and daidzein in adults. J Nutr Biochem. 2009;20:227–34.
    1. Setchell KDR, Brown NM, Zimmer-Nechemias L, Brashear WT, Wolfe BE, Kirschner AS, Heubi JE. Evidence for lack of absorption of soy isoflavone glycosides in humans, supporting the crucial role of intestinal metabolism for bioavailability. Am J Clin Nutr. 2002;76:447–53.
    1. Franke AA, Custer LJ, Hundahl SA. Determinants for urinary and plasma isoflavones in humans after soy intake. Nutr Cancer. 2004;50:141–54.
    1. Setchell KDR, Borriello SP, Hulme P, Kirk DN, Axelson M. Nonsteroidal estrogens of dietary origin: possible roles in hormone-dependent disease. Am J Clin Nutr. 1984;40:569–78.
    1. Setchell KDR, Zimmer-Nechemias L, Cai J, Heubi JE. Exposure of infants to phyto-oestrogens from soy-based infant formula. Lancet. 1997;350:23–7.
    1. Drozdowski L, Thomson ABR. Aging and the intestine. World J Gastroenterol. 2006;12:7578–84.
    1. Halm BM, Ashburn LA, Franke AA. Isoflavones from soya foods are more bioavailable in children than adults. Br J Nutr. 2007;98:998–1005.
    1. Setchell KDR, Cole SJ. Method of defining equol-producer status and its frequency among vegetarians. J Nutr. 2006;136:2188–93.
    1. Xu WH, Dai Q, Xiang YB, Long JR, Ruan ZX, Cheng JR, Zheng W, Shu XO. Interaction of soy food and tea consumption with CYP19A1 genetic polymorphisms in the development of endometrial cancer. Am J Epidemiol. 2007;166:1420–30.
    1. Deming SL, Zheng W, Xu W-H, Cai Q, Ruan Z, Xiang Y-B, Shu X-O. UGT1A1 genetic polymorphisms, endogenous estrogen exposure, soy food intake, and endometrial cancer risk. Cancer Epidemiol Biomarkers Prev. 2008;17:563–70.
    1. U.S. Department of Health and Human Services, FDA. 1996. Guidance for industry: E6 Good Clinical Practice: consolidated guidance [cited 2008 Nov 19]. Available from: .

Source: PubMed

3
Prenumerera