A comparison of clofarabine with ara-C, each in combination with daunorubicin as induction treatment in older patients with acute myeloid leukaemia

A K Burnett, N H Russell, R K Hills, J Kell, O J Nielsen, M Dennis, P Cahalin, C Pocock, S Ali, S Burns, S Freeman, D Milligan, R E Clark, A K Burnett, N H Russell, R K Hills, J Kell, O J Nielsen, M Dennis, P Cahalin, C Pocock, S Ali, S Burns, S Freeman, D Milligan, R E Clark

Abstract

The study was designed to compare clofarabine plus daunorubicin vs daunorubicin/ara-C in older patients with acute myeloid leukaemia (AML) or high-risk myelodysplastic syndrome (MDS). Eight hundred and six untreated patients in the UK NCRI AML16 trial with AML/high-risk MDS (median age, 67 years; range 56-84) and normal serum creatinine were randomised to two courses of induction chemotherapy with either daunorubicin/ara-C (DA) or daunorubicin/clofarabine (DClo). Patients were also included in additional randomisations; ± one dose of gemtuzumab ozogamicin in course 1; 2v3 courses and ± azacitidine maintenance. The primary end point was overall survival. The overall response rate was 69% (complete remission (CR) 60%; CRi 9%), with no difference between DA (71%) and DClo (66%). There was no difference in 30-/60-day mortality or toxicity: significantly more supportive care was required in the DA arm even though platelet and neutrophil recovery was significantly slower with DClo. There were no differences in cumulative incidence of relapse (74% vs 68%; hazard ratio (HR) 0.93 (0.77-1.14), P=0.5); survival from relapse (7% vs 9%; HR 0.96 (0.77-1.19), P=0.7); relapse-free (31% vs 32%; HR 1.02 (0.83-1.24), P=0.9) or overall survival (23% vs 22%; HR 1.08 (0.93-1.26), P=0.3). Clofarabine 20 mg/m2 given for 5 days with daunorubicin is not superior to ara-C+daunorubicin as induction for older patients with AML/high-risk MDS.

Figures

Figure 1
Figure 1
Trial design of AML16 (acute myeloid leukemia; intensive arm) from 2006 to 2009. C, course; CR, complete remission; PR, partial remission; Rx, treatment.
Figure 2
Figure 2
CONSORT diagram.
Figure 3
Figure 3
Outcomes. (a) Cumulative incidence of relapse; (b) survival post relapse; (c) relapse-free survival; and (d) survival from CR.
Figure 4
Figure 4
Overall survival: (a) survival by arm and (b) histogram of causes of death.

References

    1. Burnett AK. Treatment of acute myeloid leukemia: are we making progress? Hematol Am Soc Hematol Educ Program 2012; 2012: 1–6.
    1. Burnett A, Wetzler M, Lowenberg B. Therapeutic advances in acute myeloid leukemia. J Clin Oncol 2011; 29: 487–494.
    1. Lowenberg B, Zittoun R, Kerkhofs H, Jehn U, Abels J, Debusscheret L et al. On the value of intensive remission induction chemotherapy in elderly patients of 65+ yrs. with acute myeloid leukemia. A randomized phase III study (AML-7) of the EORTC Leukemia Group. J Clin Oncol 1989; 7: 1268–1274.
    1. Buchner T, Berdel WE, Haferlach C, Haferlach T, Schnittger S, Müller-Tidow C et al. Age-related risk profile and chemotherapy dose response in acute myeloid leukemia: a study by the German Acute Myeloid Leukemia Cooperative Group. J Clin Oncol 2009; 27: 61–69.
    1. Kantarjian H, O'Brien S, Cortes J, Giles F, Faderl S, Jabbour E et al. Results of intensive chemotherapy in 998 patients age 65 years or older with acute myeloid leukemia or high-risk myelodysplastic syndrome: predictive prognostic models for outcome. Cancer 2006; 106: 1090–1098.
    1. Appelbaum FR, Gundacker H, Head DR, Slovak ML, Willman CL, Godwin JE et al. Age and acute myeloid leukemia. Blood 2006; 107: 3481–3485.
    1. Lindemalm S, Liliemark J, Juliusson G, Larsson R, Albertioni F. Cytotoxicity and pharmacokinetics of cladribine metabolite, 2-chloroadenine in patients with leukemia. Cancer Lett 2004; 210: 171–177.
    1. Avramis V I, Plunkett W. 2-fluoro-ATP: a toxic metabolite of 9-beta-D-arabinosyl-2-fluoroadenine. Biochem Biophys Res Commun 1983; 113: 35–43.
    1. Montgomery JA, Shortnacy-Fowler AT, Clayton SD, Riordan JM, Secrist JA 3rd. Synthesis and biologic activity of 2'-fluro-2-halo derivatives of 9-beta-D-arabinofuranosyladenine. J Med Chem 1992; 35: 397–401.
    1. Kantarjian H, Gandhi V, Cortes J, Verstovsek S, Du M, Garcia-Manero G et al. Phase 2 clinical and pharmacologic study of clofarabine in patients with refractory or relapsed acute leukemia. Blood 2003; 102: 2379–2386.
    1. Burnett AK, Russell NH, Kell J, Dennis M, Milligan D, Paolini S et al. European development of clofarabine as treatment for older patients with acute myeloid leukemia not considered unsuitable for intensive chemotherapy. J Clin Oncol 2010; 28: 2389–2395.
    1. Kantarjian HM, Erba HP, Claxton D, Arellano M, Lyons RM, Kovascovics T et al. Phase II study of clofarabine monotherapy in previously untreated older adults with acute myeloid leukemia and unfavorable prognostic factors. J Clin Oncol 2010; 28: 549–555.
    1. Burnett AK, Russell NH, Hunter AE, Milligan D, Knapper S, Wheatley K et al. Clofarabine doubles the response rate in older patients with acute myeloid leukemia but does not improve survival. Blood 2013; 122: 1384–1394.
    1. Grimwade D, Walker H, Harrison G, Oliver F, Chatters S, Harrison CJ et al. The predictive value of hierarchical cytogenetic classification in older adults with AML: analysis of 1,065 patients entered into the MRC AML11 Trial. Blood 2001; 98: 1312–1320.
    1. Wheatley K, Brookes CL, Howman AJ, Goldstone AH, Milligan DW, Prentice AG et alUnited Kingdom National Cancer Research Institute Haematological Oncology Clinical Studies Group and Acute Myeloid Leukaemia Subgroup. Prognostic factor analysis of the survival of elderly patients with AML in the MRC AML11 and LRF AML14. Br J Haematol 2009; 145: 598–605.
    1. Cheson BD, Bennett JM, Kopecky KJ, Büchner T, Willman CL, Estey EH et al. Revised recommendations of the International Working Group for Diagnosis, Standardization of Response Criteria, Treatment Outcomes, and Reporting Standards for Therapeutic Trials in Acute Myeloid Leukemia. J Clin Oncol 2003; 21: 4642–4649.
    1. Burnett AK, Russell NH, Hills RK, Kell J, Freeman S, Kjeldsen L et al. Addition of gemtuzumab ozogamicin to induction chemotherapy improves survival in older patients with acute myeloid leukemia. J Clin Oncol 2012; 32: 3924–3931.
    1. Freeman SD, Virgo P, Couzens S, Grimwade D, Russell NH, Hills RK et al. Prognostic relevance of treatment response measured by flow cytometric residual disease detection in older patients with acute myeloid leukemia. J Clin Oncol 2013; 31: 4123–4131.
    1. Fernandez HF, Sun Z, Yao X, Litzow MR, Luger SM, Paietta EM et al. Anthracycline dose intensification in acute myeloid leukemia. N Engl J Med 2009; 361: 1249–1259.
    1. Lowenberg B, Ossenkoppele GJ, van Putten W, Schouten HC, Graux C, Ferrant A et al. High-dose daunorubicin in older patients with acute myeloid leukemia. N Eng. J Med 2009; 361: 1235–1248.
    1. Lee JH, Joo YD, Kim H, Bae SH, Kim MK, Zang DY et al. A randomized trial comparing standard versus high-dose daunorubicin induction in patients with acute myeloid leukemia. Blood 2011; 118: 3832–3841.
    1. Weick JK, Kopecky KJ, Appelbaum FR, Head DR, Kingsbury LL, Balcerzak SP et al. A randomized investigation of high-dose versus standard dose cytosine arabinoside with daunorubicin in patients with previously untreated acute myeloid leukemia: A Southwest Oncology Group Study. Blood 1996; 88: 2841–2851.
    1. Löwenberg B, Pabst T, Vellenga E, van Putten W, Schouten HC, Graux C et al. Cytarabine dose for acute myeloid leukemia. N Engl J Med 2001; 364: 1027–1036.
    1. Castaigne S, Pautas C, Terre C, Raffoux E, Bordessoule D, Bastie JN et al. Effect of gemtuzumab ozogamicin on survival of adult patients with de-novo acute myeloid leukaemia (ALFA-0701): a randomised, open-label, phase 3 study. Lancet 2012; 379: 1508–1516.
    1. Burnett AK, Russell NH, Hills RK, Hunter AE, Kjeldsen L, Yin J et al. Optimization of chemotherapy for younger patients with acute myeloid leukemia: results of the medical research council AML15 trial. J Clin Oncol 2013; 31: 3360–3368.
    1. Holowiecki J, Grosicki S, Giebel S, Robak T, Kyrcz-Krzemien S, Kuliczkowski K et al. Cladribine, but not fludarabine, added to daunorubicin and cytarabine during induction prolongs survival of patients with acute myeloid leukemia: a multicenter, randomized phase III study. J Clin Oncol 2012; 30: 2441–2448.
    1. Burnett AK, Russell N, Hills RK, Panoskaltsis N, Khwaja A, Hemmaway C et al. A randomised comparison of the novel nucleoside analogue sapacitabine with low-dose cytarabine in older patients with acute myeloid leukaemia. Leukemia 2015; 29: 1312–1319.
    1. Foran JM, Sun Z, Claxton DF, Lazarus HM, Thomas M, Melnick A et al. North American Leukemia‚ Intergroup Phase III Randomized Trial of single agent clofarabine as induction and post-remission therapy‚ and decitabine as maintenance therapy in newly-diagnosed acute myeloid leukemia in older adults (age ⩾ 60 years). A trial of the ECOG-ACRIN Cancer Research Group (E2906). Blood 2015; 126: 23 (Abstr 217).
    1. Burnett AK, Kell WJ, Hills RK et al. The feasibility of combining daunorubicin, clofarabine and gemtuzumab ozogamicin is feasible and effective. A pilot study. Blood 2006; 108: 1950.
    1. Lancet JE, Cortes JE, Hogge DE, Tallman MS, Kovacsovics TJ, Damon LE et al. Phase 2 trial of CPX-351, a fixed 5:1 molar ratio of cytarabine-daunorubicin, vs cytarabine/daunorubicin in older adults with untreated AML. Blood 2014; 123: 3239–3246.
    1. Cortes JE, Goldberg SL, Feldman EJ, Rizzeri DA, Hogge DE, Larson M et al. Phase II, multicenter, randomized trial of CPX-351 (cytarabine:daunorubicin) liposome injection versus intensive salvage therapy in adults with first relapse AML. Cancer 2015; 121: 234–242.

Source: PubMed

3
Prenumerera