Graded Exercise Testing Protocols for the Determination of VO2max: Historical Perspectives, Progress, and Future Considerations

Nicholas M Beltz, Ann L Gibson, Jeffrey M Janot, Len Kravitz, Christine M Mermier, Lance C Dalleck, Nicholas M Beltz, Ann L Gibson, Jeffrey M Janot, Len Kravitz, Christine M Mermier, Lance C Dalleck

Abstract

Graded exercise testing (GXT) is the most widely used assessment to examine the dynamic relationship between exercise and integrated physiological systems. The information from GXT can be applied across the spectrum of sport performance, occupational safety screening, research, and clinical diagnostics. The suitability of GXT to determine a valid maximal oxygen consumption (VO2max) has been under investigation for decades. Although a set of recommended criteria exists to verify attainment of VO2max, the methods that originally established these criteria have been scrutinized. Many studies do not apply identical criteria or fail to consider individual variability in physiological responses. As an alternative to using traditional criteria, recent research efforts have been directed toward using a supramaximal verification protocol performed after a GXT to confirm attainment of VO2max. Furthermore, the emergence of self-paced protocols has provided a simple, yet reliable approach to designing and administering GXT. In order to develop a standardized GXT protocol, additional research should further examine the utility of self-paced protocols used in conjunction with verification protocols to elicit and confirm attainment of VO2max.

Conflict of interest statement

The authors declare that they have no competing interests.

References

    1. Lambert G. The exercise blood pressure test of myocardial efficiency. BMJ. 1918;2(3014):366–368. doi: 10.1136/bmj.2.3014.366.
    1. Tipton C. M. History of Exercise Physiology. Human Kinetics; 2014.
    1. Hill A. V., Lupton H. The oxygen consumption during running. The Journal of Physiology. 1922;56:32–33.
    1. Hill A. V., Long C. N. H., Lupton H. Muscular exercise, lactic acid, and the supply and utilisation of oxygen-parts i-iii. Proceedings of the Royal Society of London B: Biological. 1924;96:438–475.
    1. Hill A. V., Long C., Lupton H. Muscular exercise, lactic acid and the supply and utilisation of oxygen—Parts VII-VIII. Proceedings of the Royal Society of London B: Biological. 1924;97:155–176.
    1. Hill A. V., Long C. N. H., Lupton H. Muscular exercise, lactic acid, and the supply and utilisation of oxygen- parts iv-vi. Proceedings of the Royal Society of London B: Biological. 1924;97:84–138.
    1. Bassett D. R., Jr. Scientific contributions of A. V. Hill: exercise physiology pioneer. Journal of Applied Physiology. 2002;93(5):1567–1582. doi: 10.1152/japplphysiol.01246.2001.
    1. Day J. R., Rossiter H. B., Coats E. M., Skasick A., Whipp B. J. The maximally attainable V˙o2 during exercise in humans: the peak vs. maximum issue. Journal of Applied Physiology. 2003;95(5):1901–1907. doi: 10.1152/japplphysiol.00024.2003.
    1. Albouaini K., Egred M., Alahmar A., Wright D. J. Cardiopulmonary exercise testing and its application. Postgraduate Medical Journal. 2007;83(985):675–682. doi: 10.1136/hrt.2007.121558.
    1. Blair S. N., Kampert J. B., Kohl H. W., III, et al. Influences of cardiorespiratory fitness and other precursors on cardiovascular disease and all-cause mortality in men and women. Journal of the American Medical Association. 1996;276(3):205–210. doi: 10.1001/jama.276.3.205.
    1. Blair S. N., Kohl H. W., III, Barlow C. E., Paffenbarger R. S., Jr., Gibbons L. W., Macera C. A. Changes in physical fitness and all-cause mortality: a prospective study of healthy and unhealthy men. The Journal of the American Medical Association. 1995;273(14):1093–1098. doi: 10.1001/jama.1995.03520380029031.
    1. Kodama S., Saito K., Tanaka S., et al. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: a meta-analysis. Journal of the American Medical Association. 2009;301(19):2024–2035. doi: 10.1001/jama.2009.681.
    1. Levine B. D. VO2max: what do we know, and what do we still need to know? The Journal of Physiology. 2008;586(1):25–34.
    1. Crisafulli A., Melis F., Tocco F., et al. Anaerobic threshold and the oxygen consumption-cardiac output relationship during exercise. Sport Sciences for Health. 2005;1(2):75–80. doi: 10.1007/s11332-2005-004-0014-3.
    1. Faulkner J. A., Roberts D. E., Elk R. L., Conway J. Cardiovascular responses to submaximum and maximum effort cycling and running. Journal of applied physiology. 1971;30(4):457–461.
    1. Lewis S. F., Taylor W. F., Graham R. M., Pettinger W. A., Schutte J. E., Blomqvist C. G. Cardiovascular responses to exercise as functions of absolute and relative work load. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology. 1983;54(5):1314–1323.
    1. Stringer W. W., Hansen J. E., Wasserman K. Cardiac output estimated noninvasively from oxygen uptake during exercise. Journal of Applied Physiology. 1997;82(3):908–912.
    1. Proctor D. N., Beck K. C., Shen P. H., Eickhoff T. J., Halliwill Joyner M. J., Jr. Influence of age and gender on cardiac output-VO2 relationships during submaximal cycle ergometry. Journal of Applied Physiology. 1998;84(2):599–605.
    1. Knight-Maloney M., Robergs R. A., Gibson A., Ghiasvand F. Threshold changes in blood lactate, beat-to-cardiovascular function, and breath-by-breath VO2 during incremental exercise. Journal of Exercise Physiology Online. 2002;5(3):39–53.
    1. Bunc V., Hofmann P., Leitner H., Gaisl G. Verification of the heart rate threshold. European Journal of Applied Physiology and Occupational Physiology. 1995;70(3):263–269. doi: 10.1007/BF00238574.
    1. Conconi F., Ferrari M., Ziglio P. G., Droghetti P., Codeca L. Determination of the anaerobic threshold by a noninvasive field test in runners. Journal of Applied Physiology Respiratory Environmental and Exercise Physiology. 1982;52(4):869–873.
    1. Hofmann P., Pokan R., Preidler K., et al. Relationship between heart rate threshold, lactate turn point and myocardial function. International Journal of Sports Medicine. 1994;15(5):232–237. doi: 10.1055/s-2007-1021052.
    1. Hofmann P., Pokan R., Von Duvillard S. P., Seibert F. J., Zweiker R., Schmid P. Heart rate performance curve during incremental cycle ergometer exercise in healthy young male subjects. Medicine and Science in Sports and Exercise. 1997;29(6):762–768. doi: 10.1097/00005768-199706000-00005.
    1. Jones A. M., Doust J. H. Lack of reliability in Conconi's heart rate deflection point. International Journal of Sports Medicine. 1995;16(8):541–544. doi: 10.1055/s-2007-973051.
    1. Allen D. G., Kentish J. C. The cellular basis of the length-tension relation in cardiac muscle. Journal of Molecular and Cellular Cardiology. 1985;17(9):821–840. doi: 10.1016/s0022-2828(85)80097-3.
    1. Astrand P. O., Cuddy T. E., Saltin B., Stenberg J. Cardiac output during submaximal and maximal work. Journal of Applied Physiology. 1964;19:268–274.
    1. Bevegard S., Holmgren A., Jonsson B. The effect of body position on the circulation at rest and during exercise, with special reference to the influence on the stroke volume. Acta Physiologica Scandinavica. 1960;49:279–298. doi: 10.1111/j.1748-1716.1960.tb01953.x.
    1. Grimby G., Nilsson N. J., Saltin B. Cardiac output during submaximal and maximal exercise in active middle-aged athletes. Journal of Applied Physiology. 1966;21(4):1150–1156.
    1. Warburton D. E. R., Haykowsky M. J., Quinney H. A., Blackmore D., Teo K. K., Humen D. P. Myocardial response to incremental exercise in endurance-trained athletes: influence of heart rate, contractility and the Frank-Starling effect. Experimental Physiology. 2002;87(5):613–622. doi: 10.1113/eph8702372.
    1. Vella C. A., Robergs R. A. A review of the stroke volume response to upright exercise in healthy subjects. British Journal of Sports Medicine. 2005;39(4):190–195. doi: 10.1136/bjsm.2004.013037.
    1. Wiebe C. G., Gledhill N., Jamnik V. K., Ferguson S. Exercise cardiac function in young through elderly endurance trained women. Medicine and Science in Sports and Exercise. 1999;31(5):684–691. doi: 10.1097/00005768-199905000-00010.
    1. Rivera A. M., Pels A. E., III, Sady S. P., Sady M. A., Cullinane E. M., Thompson P. D. Physiological factors associated with the lower maximal oxygen consumption of master runners. Journal of Applied Physiology. 1989;66(2):949–954. doi: 10.1063/1.343524.
    1. McLaren P. F., Nurhayati Y., Boutcher S. H. Stroke volume response to cycle ergometry in trained and untrained older men. European Journal of Applied Physiology and Occupational Physiology. 1997;75(6):537–542. doi: 10.1007/s004210050201.
    1. Ogawa T., Spina R. J., Martin W. H., III, et al. Effects of aging, sex, and physical training on cardiovascular responses to exercise. Circulation. 1992;86(2):494–503. doi: 10.1161/01.CIR.86.2.494.
    1. McCole S. D., Brown M. D., Moore G. E., Zmuda J. M., Cwynar J. D., Hagberg J. M. Cardiovascular hemodynamics with increasing exercise intensities in postmenopausal women. Journal of Applied Physiology. 1999;87(6):2334–2340.
    1. Gledhill N., Cox D., Jamnik R. Endurance athletes' stroke volume does not plateau: major advantage is diastolic function. Medicine and Science in Sports and Exercise. 1994;26(9):1116–1121.
    1. Zhou B., Conlee R. K., Jensen R., Fellingham G. W., George J. D., Fisher A. G. Stroke volume does not plateau during graded exercise in elite male distance runners. Medicine and Science in Sports and Exercise. 2001;33(11):1849–1854. doi: 10.1097/00005768-200111000-00008.
    1. Crawford M. H., Petru M. A., Rabinowitz C. Effect of isotonic exercise training on left ventricular volume during upright exercise. Circulation. 1985;72(6):1237–1243. doi: 10.1161/01.CIR.72.6.1237.
    1. Ferguson S., Gledhill N., Jamnik V. K., Wiebe C., Payne N. Cardiac performance in endurance-trained and moderately active young women. Medicine and Science in Sports and Exercise. 2001;33(7):1114–1119.
    1. Vanfraechem J. H. P. Stroke volume and systolic time interval adjustments during bicycle exercise. Journal of Applied Physiology Respiratory Environmental and Exercise Physiology. 1979;46(3):588–592.
    1. Spina R. J., Ogawa T., Kohrt W. M., Martin W. H., III, Holloszy J. O., Ehsani A. A. Differences in cardiovascular adaptations to endurance exercise training between older men and women. Journal of Applied Physiology. 1993;75(2):849–855.
    1. Chapman C. B., Fisher J. N., Sproule B. J. Behavior of stroke volume at rest and during exercise in human beings. The Journal of Clinical Investigation. 1960;39:1208–1213. doi: 10.1172/jci104136.
    1. Krip B., Gledhill N., Jamnik V., Warburton D. Effect of alterations in blood volume on cardiac function during maximal exercise. Medicine and Science in Sports and Exercise. 1997;29(11):1469–1476. doi: 10.1097/00005768-199711000-00013.
    1. Martino M., Gledhill N., Jamnik V. High VO2max with no history of training is primarily due to high blood volume. Medicine and Science in Sports and Exercise. 2002;34(6):966–971. doi: 10.1097/00005768-200206000-00010.
    1. De Cort S. C., Innes J. A., Barstow T. J., Guz A. Cardiac output, oxygen consumption and arteriovenous oxygen difference following a sudden rise in exercise level in humans. The Journal of Physiology. 1991;441:501–512. doi: 10.1113/jphysiol.1991.sp018764.
    1. Wasserman K., Whipp B. J., Davis J. A. Respiratory physiology of exercise: metabolism, gas exchange, and ventilatory control. International Review of Physiology. 1981;23:149–211.
    1. Whipp B. J., Davis J. A., Torres F., Wasserman K. A test to determine parameters of aerobic function during exercise. Journal of Applied Physiology Respiratory Environmental and Exercise Physiology. 1981;50(1):217–221.
    1. Casaburi R., Daly J., Hansen J. E., Effros R. M. Abrupt changes in mixed venous blood gas composition after the onset of exercise. Journal of Applied Physiology. 1989;67(3):1106–1112.
    1. Blomqvist C. G., Saltin B. Cardiovascular adaptations to physical training. Annual Review of Physiology. 1983;45:169–189. doi: 10.1146/annurev.ph.45.030183.001125.
    1. Ekblom B., Astrand P. O., Saltin B., Stenberg J., Wallström B. Effect of training on circulatory response to exercise. Journal of Applied Physiology. 1968;24(4):518–528.
    1. Montero D., Diaz-Canestro C., Lundby C. Endurance training and VO2max. Medicine & Science in Sports & Exercise. 2015;47:2024–2033.
    1. Montero D., Diaz-Canestro C. Endurance training and maximal oxygen consumption with ageing: role of maximal cardiac output and oxygen extraction. European Journal of Preventive Cardiology. 2016;23(7):733–743. doi: 10.1177/2047487315617118.
    1. Taylor H. L., Buskirk E., Henschel A. Maximal oxygen intake as an objective measure of cardio-respiratory performance. Journal of Applied Physiology. 1955;8:73–80.
    1. Myers J., Buchanan N., Walsh D., et al. Comparison of the ramp versus standard exercise protocols. Journal of the American College of Cardiology. 1991;17(6):1334–1342. doi: 10.1016/s0735-1097(10)80144-5.
    1. Muscat K. M., Kotrach H. G., Wilkinson-Maitland C. A., Schaeffer M. R., Mendonca C. T., Jensen D. Physiological and perceptual responses to incremental exercise testing in healthy men: effect of exercise test modality. Applied Physiology, Nutrition and Metabolism. 2015;40(11):1199–1209. doi: 10.1139/apnm-2015-0179.
    1. Hermansen L., Ekblom B., Saltin B. Cardiac output during submaximal and maximal treadmill and bicycle exercise. Journal of Applied Physiology. 1970;29(1):82–86.
    1. Jacobs I., Sjödin B. Relationship of ergometer-specific VO2 max and muscle enzymes to blood lactate during submaximal exercise. British Journal of Sports Medicine. 1985;19(2):77–80. doi: 10.1136/bjsm.19.2.77.
    1. Okita K., Nishijima H., Yonezawa K., et al. Skeletal muscle metabolism in maximal bicycle and treadmill exercise distinguished by using in vivo metabolic freeze method and phosphorus-31 magnetic resonance spectroscopy in normal men. American Journal of Cardiology. 1998;81(1):106–109. doi: 10.1016/s0002-9149(97)00857-6.
    1. Porszasz J., Casaburi R., Somfay A., Woodhouse L. J., Whipp B. J. A treadmill ramp protocol using simultaneous changes in speed and grade. Medicine & Science in Sports & Exercise. 2003;35(9):1596–1603. doi: 10.1249/01.mss.0000084593.56786.da.
    1. Tanner D. A., Duke J. W., Stager J. M. Ventilatory patterns differ between maximal running and cycling. Respiratory Physiology and Neurobiology. 2014;191(1):9–16. doi: 10.1016/j.resp.2013.10.011.
    1. Pollock M. L., Bohannon R. L., Cooper K. H., et al. A comparative analysis of four protocols for maximal treadmill stress testing. American Heart Journal. 1976;92(1):39–46. doi: 10.1016/S0002-8703(76)80401-2.
    1. Balke B., Ware R. W. An experimental study of physical fitness of Air Force personnel. United States Armed Forces Medical Journal. 1959;10(6):675–688.
    1. Bruce R. A., Blackmon J. R., Jones J. W., Strait G. Exercising testing in adult normal subjects and cardiac patients. Pediatrics. 1963;32:742–756.
    1. Ellestad M. H., Allen W., Wan M. C., Kemp G. L. Maximal treadmill stress testing for cardiovascular evaluation. Circulation. 1969;39(4):517–522. doi: 10.1161/01.cir.39.4.517.
    1. Dey N. C., Samanta A., Saha R. The pulse rate and energy expenditure profile of underground coal miners in India. Mining Technology. 2004;113(3):137–141. doi: 10.1179/037178404225005011.
    1. Davis J. A., Whipp B. J., Lamarra N., Huntsman D. J., Frank M. H., Wasserman K. Effect of ramp slope on determination of aerobic parameters from the ramp exercise test. Medicine & Science in Sports & Exercise. 1982;14(5):339–343.
    1. Buchfuhrer M. J., Hansen J. E., Robinson T. E., Sue D. Y., Wasserman K., Whipp B. J. Optimizing the exercise protocol for cardiopulmonary assessment. Journal of Applied Physiology Respiratory Environmental and Exercise Physiology. 1983;55(5):1558–1564.
    1. Zhang Y.-Y., Johnson M. C., Chow N., Wasserman K. Effect of exercise testing protocol on parameters of aerobic function. Medicine & Science in Sports & Exercise. 1991;23(5):625–630.
    1. Yoon B., Kravitz L., Robergs R. VO2max, protocol duration, and the VO2 plateau. Medicine & Science in Sports & Exercise. 2007;39(7):1186–1192. doi: 10.1249/mss.0b13e318054e304.
    1. Astorino T. A., Rietschel J. C., Tam P. A., et al. Reinvestigation of optimal duration of VO2max testing. Journal of Exercise Physiology Online. 2004;7(6):1–8.
    1. Lepretre P. M., Koralsztein J. P., Billat V. L. Effect of exercise intensity on relationship between V˙o2max and cardiac output. Medicine & Science in Sports & Exercise. 2004;36(8):1357–1363.
    1. McCole S. D., Davis A. M., Fueger P. T. Is there a disassociation of maximal oxygen consumption and maximal cardiac output? Medicine & Science in Sports & Exercise. 2001;33(8):1265–1269. doi: 10.1097/00005768-200108000-00004.
    1. Eston R. G., Thompson M. Use of ratings of perceived exertion for predicting maximal work rate and prescribing exercise intensity in patients taking atenolol. British Journal of Sports Medicine. 1997;31(2):114–119. doi: 10.1136/bjsm.31.2.114.
    1. Eston R. G., Lamb K. L., Parfitt G., King N. The validity of predicting maximal oxygen uptake from a perceptually-regulated graded exercise test. European Journal of Applied Physiology. 2005;94(3):221–227. doi: 10.1007/s00421-005-1327-2.
    1. Mauger A. R., Sculthorpe N. A new VO2max protocol allowing self-pacing in maximal incremental exercise. British Journal of Sports Medicine. 2012;46(1):59–63. doi: 10.1136/bjsports-2011-090006.
    1. Pollock M. L., Foster C., Schmidt D., Hellman C., Linnerud A. C., Ward A. Comparative analysis of physiologic responses to three different maximal graded exercise test protocols in healthy women. American Heart Journal. 1982;103(3):363–373. doi: 10.1016/0002-8703(82)90275-7.
    1. Hagerman F. C. Applied physiology of rowing. Sports Medicine. 1984;1(4):303–326. doi: 10.2165/00007256-198401040-00005.
    1. Foster C., Green M. A., Snyder A. C., Thompson N. N. Physiological responses during simulated competition. Medicine & Science in Sports & Exercise. 1993;25(7):877–882. doi: 10.1249/00005768-199307000-00018.
    1. Borg G. A. V. Psychophysical bases of perceived exertion. Medicine and Science in Sports and Exercise. 1982;14(5):377–381.
    1. Eston R. G., Faulkner J. A., Mason E. A., Parfitt G. The validity of predicting maximal oxygen uptake from perceptually regulated graded exercise tests of different durations. European Journal of Applied Physiology. 2006;97(5):535–541. doi: 10.1007/s00421-006-0213-x.
    1. Morris M., Lamb K., Cotterrell D., Buckley J. Predicting maximal oxygen uptake via a Perceptually Regulated Exercise Test (PRET) Journal of Exercise Science and Fitness. 2009;7(2):122–128. doi: 10.1016/s1728-869x(09)60015-0.
    1. Coquart J. B., Garcin M., Parfitt G., Tourny-Chollet C., Eston R. G. Prediction of maximal or peak oxygen uptake from ratings of perceived exertion. Sports Medicine. 2014;44(5):563–578. doi: 10.1007/s40279-013-0139-5.
    1. Hanson N. J., Scheadler C. M., Lee T. L., Neuenfeldt N. C., Michael T. J., Miller M. G. Modality determines VO2max achieved in self-paced exercise tests: validation with the Bruce protocol. European Journal of Applied Physiology. 2016;116(7):1313–1319. doi: 10.1007/s00421-016-3384-0.
    1. Chidnok W., DiMenna F. J., Bailey S. J., et al. VO2max is not altered by self-pacing during incremental exercise. European Journal of Applied Physiology. 2013;113(2):529–539. doi: 10.1007/s00421-012-2478-6.
    1. Eston R. Use of ratings of perceived exertion in sports. International Journal of Sports Physiology and Performance. 2012;7(2):175–182. doi: 10.1123/ijspp.7.2.175.
    1. Mauger A. R., Metcalfe A. J., Taylor L., Castle P. C. The efficacy of the self-paced V˙O2max test to measure maximal oxygen uptake in treadmill running. Applied Physiology, Nutrition, and Metabolism. 2013;38(12):1211–1216. doi: 10.1139/apnm-2012-0384.
    1. Eston R. G., Crockett A., Jones A. M. Discussion of ‘the efficacy of the self-paced VO2 max test to measure maximal oxygen uptake in treadmill running’. Applied Physiology, Nutrition and Metabolism. 2014;39(5):581–582. doi: 10.1139/apnm-2013-0501.
    1. Poole D. C. Discussion: ‘the efficacy of the self-paced V˙o2max test to measure maximal oxygen uptake in treadmill running’. Applied Physiology Nutrition and Metabolism. 2014;39(5):581–582.
    1. Scheadler C. M., Devor S. T. VO2max measured with a self-selected work rate protocol on an automated treadmill. Medicine & Science in Sports & Exercise. 2015;47(10):2158–2165.
    1. Astorino T. A., McMillan D. W., Edmunds R. M., Sanchez E. Increased cardiac output elicits higher VO2max in response to self-paced exercise. Applied Physiology, Nutrition and Metabolism. 2015;40(3):223–229. doi: 10.1139/apnm-2014-0305.
    1. Sperlich P. F., Holmberg H.-C., Reed J. L., Zinner C., Mester J., Sperlich B. Individual versus standardized running protocols in the determination of VO2max. Journal of Sports Science and Medicine. 2015;14(2):386–393.
    1. Faulkner J., Mauger A. R., Woolley B., Lambrick D. The efficacy of a self-paced VO2max test during motorized treadmill exercise. International Journal of Sports Physiology and Performance. 2015;10(1):99–105. doi: 10.1123/ijspp.2014-0052.
    1. Hogg J. S., Hopker J. G., Mauger A. R. The self-paced VO2max test to assess maximal oxygen uptake in highly trained runners. International Journal of Sports Physiology and Performance. 2015;10(2):172–177. doi: 10.1123/ijspp.2014-0041.
    1. Straub A. M., Midgley A. W., Zavorsky G. S., Hillman A. R. Ramp-incremented and RPE-clamped test protocols elicit similar VO2max values in trained cyclists. European Journal of Applied Physiology. 2014;114(8):1581–1590. doi: 10.1007/s00421-014-2891-0.
    1. Faulkner J., Parfitt G., Eston R. Prediction of maximal oxygen uptake from the ratings of perceived exertion and heart rate during a perceptually-regulated sub-maximal exercise test in active and sedentary participants. European Journal of Applied Physiology. 2007;101(3):397–407. doi: 10.1007/s00421-007-0508-6.
    1. Howley E. T., Bassett D. R., Welch H. G. Criteria for maximal oxygen uptake: review and commentary. Medicine and Science in Sports and Exercise. 1995;27(9):1292–1301.
    1. Midgley A. W., McNaughton L. R., Polman R., Marchant D. Criteria for determination of maximal oxygen uptake: a brief critique and recommendations for future research. Sports Medicine. 2007;37(12):1019–1028. doi: 10.2165/00007256-200737120-00002.
    1. Midgley A. W., Carroll S., Marchant D., McNaughton L. R., Siegler J. Evaluation of true maximal oxygen uptake based on a novel set of standardized criteria. Applied Physiology, Nutrition and Metabolism. 2009;34(2):115–123. doi: 10.1139/H08-146.
    1. Robergs R. A. An exercise physiologist's ‘contemporary’ interpretations of the ‘ugly and creaking edifices’ of the VO2max concept. Journal of Exercise Physiology Online. 2001;4(1):1–44.
    1. Astorino T. A., Robergs R. A., Ghiasvand F., Marks D., Burns S. Incidence of the oxygen plateau at VO2max during exercise testing to volitional fatigue. Journal of Exercise Physiology Online. 2000;3(4):1–12.
    1. Bassett D. R., Jr., Howley E. T. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Medicine & Science in Sports & Exercise. 2000;32(1):70–84.
    1. Cumming G. R., Friesen W. Bicycle ergometer measurement of maximal oxygen uptake in children. Canadian Journal of Physiology and Pharmacology. 1967;45(6):937–946. doi: 10.1139/y67-111.
    1. Astorino T. A., Willey J., Kinnahan J., Larsson S. M., Welch H., Dalleck L. C. Elucidating determinants of the plateau in oxygen consumption at VO2max. British Journal of Sports Medicine. 2005;39(9):655–660. doi: 10.1136/bjsm.2004.016550.
    1. Gordon D., Mehter M., Gernigon M., Caddy O., Keiller D., Barnes R. The effects of exercise modality on the incidence of plateau at VO2max. Clinical Physiology and Functional Imaging. 2012;32:394–399.
    1. Astorino T. A. Alterations in VO2max and the VO2 plateau with manipulation of sampling interval. Clinical Physiology and Functional Imaging. 2009;29(1):60–67. doi: 10.1111/j.1475-097x.2008.00835.x.
    1. Fox S. M., Naughton J. P., Haskell W. L. Physical activity and the prevention of coronary heart disease. Annals of Clinical Research. 1971;3(6):404–432.
    1. Robergs R. A., Landwehr R. The surprising history of the “HRmax=220-age” equation. Journal of Exercise Physiology Online. 2002;5(2):1–10.
    1. Tanaka H., Monahan K. D., Seals D. R. Age-predicted maximal heart rate revisited. Journal of the American College of Cardiology. 2001;37(1):153–156. doi: 10.1016/S0735-1097(00)01054-8.
    1. Issekutz B., Rodahl K. Respiratory quotient during exercise. Journal of Applied Physiology. 1961;16:606–610.
    1. Issekutz B., Birkhead N. C., Rodahl K. Use of respiratory quotients in assessment of aerobic work capacity. Journal of Applied Physiology. 1962;17(1):47–50.
    1. Brooks G. A. Anaerobic threshold: review of the concept and directions for future research. Medicine and Science in Sports and Exercise. 1985;17(1):22–31.
    1. Maud P. J., Foster C. Physiological Assessment of Human Fitness. Human Kinetics; 2006.
    1. Astrand P. O. Experimental Studies of Physical Working Capacity in Ventilation to Sex and Age. Copenhagen, Denmark: Einar Munkagaard; 1952.
    1. Edvardsen E., Hem E., Anderssen S. A. End criteria for reaching maximal oxygen uptake must be strict and adjusted to sex and age: a cross-sectional study. PLoS ONE. 2014;9(1) doi: 10.1371/journal.pone.0085276.e85276
    1. Ainsworth B. E., McMurray R. G., Veazey S. K. Prediction of peak oxygen uptake from submaximal exercise tests in older men and women. Journal of Aging and Physical Activity. 1997;5(1):27–38. doi: 10.1123/japa.5.1.27.
    1. Chen M. J., Fan X., Moe S. T. Criterion-related validity of the Borg ratings of perceived exertion scale in healthy individuals: a meta-analysis. Journal of Sports Sciences. 2002;20(11):873–899. doi: 10.1080/026404102320761787.
    1. Eston R. G. Perceived exertion: recent advances and novel applications in children and adults. Journal of Exercise Science and Fitness. 2009;7:S11–S17. doi: 10.1016/s1728-869x(09)60018-6.
    1. Hoogeveen A. R., Schep C., Hoogsteen J. The ventilatory threshold, heart rate, and endurance performance: relationships in elite cyclists. International Journal of Sports Medicine. 1999;20(2):114–117. doi: 10.1055/s-2007-971103.
    1. James D. V. B., Doust J. H. Oxygen uptake during moderate intensity running: response following a single bout of interval training. European Journal of Applied Physiology and Occupational Physiology. 1998;77(6):551–555. doi: 10.1007/s004210050375.
    1. Noakes T. D. Testing for maximum oxygen consumption has produced a brainless model of human exercise performance. British Journal of Sports Medicine. 2008;42(7):551–555. doi: 10.1136/bjsm.2008.046821.
    1. Magnan R. E., Kwan B. M., Ciccolo J. T., Gurney B., Mermier C. M., Bryan A. D. Aerobic capacity testing with inactive individuals: the role of subjective experience. Journal of Physical Activity and Health. 2013;10(2):271–279. doi: 10.1123/jpah.10.2.271.
    1. Foster C., Kuffel E., Bradley N., et al. VO2max during successive maximal efforts. European Journal of Applied Physiology. 2007;102(1):67–72. doi: 10.1007/s00421-007-0565-x.
    1. Hawkins M. N., Raven P. B., Snell P. G., Stray-Gundersen J., Levine B. D. Maximal oxygen uptake as a parametric measure of cardiorespiratory capacity. Medicine & Science in Sports & Exercise. 2007;39:103–107.
    1. Mier C. M., Alexander R. P., Mageean A. L. Achievement of VO2max criteria during a continuous graded exercise test and a verification stage performed by college athletes. Journal of Strength and Conditioning Research. 2012;26(10):2648–2654. doi: 10.1519/jsc.0b013e31823f8de9.
    1. Nolan P. B., Beaven M. L., Dalleck L. Comparison of intensities and rest periods for VO2max verification testing procedures. International Journal of Sports Medicine. 2014;35(12):1024–1029. doi: 10.1055/s-0034-1367065.
    1. Poole D. C., Wilkerson D. P., Jones A. M. Validity of criteria for establishing maximal O2 uptake during ramp exercise tests. European Journal of Applied Physiology. 2008;102(4):403–410. doi: 10.1007/s00421-007-0596-3.
    1. Thoden J. S., MacDougall J. D., Wilson B. A. Testing Aerobic Power. Mouvement Publications Inc; 1982.
    1. Thoden J. S. Testing Aerobic Power. Human Kinetics; 1991.
    1. NiemelÄ K., Palatsi I., Linnaluoto M., Takkunen J. Criteria for maximum oxygen uptake in progressive bicycle tests. European Journal of Applied Physiology and Occupational Physiology. 1980;44(1):51–59. doi: 10.1007/BF00421763.
    1. Wyndham C. H. Submaximal tests for estimating maximum oxygen intake. Canadian Medical Association Journal. 1967;96(12):736–745.
    1. Dalleck L. C., Astorino T. A., Erickson R. M., McCarthy C. M., Beadell A. A., Botten B. H. Suitability of verification testing to confirm attainment of VO2max in middle-aged and older adults. Research in Sports Medicine. 2012;20(2):118–128. doi: 10.1080/15438627.2012.660825.
    1. Midgley A. W., McNaughton L. R., Carroll S. Verification phase as a useful tool in the determination of the maximal oxygen uptake of distance runners. Applied Physiology, Nutrition and Metabolism. 2006;31(5):541–548. doi: 10.1139/H06-023.
    1. Rossiter H. B., Kowalchuk J. M., Whipp B. J. A test to establish maximum O2 uptake despite no plateau in the O2 uptake response to ramp incremental exercise. Journal of Applied Physiology. 2006;100(3):764–770. doi: 10.1152/japplphysiol.00932.2005.
    1. Weatherwax R. M., Richardson T. B., Beltz N. M., Nolan P. B., Dalleck L. Verification testing to confirm VO2max in altitude-residing, endurance-trained runners. International Journal of Sports Medicine. 2016;37(7):525–530. doi: 10.1055/s-0035-1569346.
    1. Midgley A. W., McNaughton L. R., Carroll S. Time at V∙O2max during intermittent treadmill running: test protocol dependent or methodological artefact? International Journal of Sports Medicine. 2007;28(11):934–939. doi: 10.1055/s-2007-964972.
    1. American Thoracic Society. ATS/ACCP statement on cardiopulmonary exercise testing. American Journal of Respiratory and Critical Care Medicine. 2003;167(2):211–277. doi: 10.1164/rccm.167.2.211.
    1. Babineau C., Léger L., Long A., Bosquet L. Variability of maximum oxygen consumption measurement in various metabolic systems. Journal of Strength and Conditioning Research. 1999;13(4):318–324. doi: 10.1519/1533-4287(1999)013<0318:vomocm>;2.
    1. Balady G. J., Arena R., Sietsema K., et al. Clinician's guide to cardiopulmonary exercise testing in adults: a scientific statement from the American heart association. Circulation. 2010;122(2):191–225. doi: 10.1161/cir.0b013e3181e52e69.
    1. Yule E., Kaminsky L. A., Sedlock D. A., King B. A., Whaley M. H. Inter-laboratory reliability of VO2max and submaximal measurements. Medicine & Science in Sports & Exercise. 1996;28(5):p. S15. doi: 10.1097/00005768-199605001-00087.
    1. Vickers R. R. Measurement Error in Maximal Oxygen Uptake Tests. Naval Health Research Center; 2003.
    1. Katch V. L., Sady S. S., Freedson P. Biological variability in maximum aerobic power. Medicine and Science in Sports and Exercise. 1982;14(1):21–25. doi: 10.1249/00005768-198201000-00004.
    1. Midgley A. W., Carroll S. Emergence of the verification phase procedure for confirming ‘true’ VO2max. Scandinavian Journal of Medicine and Science in Sports. 2009;19(3):313–322. doi: 10.1111/j.1600-0838.2009.00898.x.
    1. Mann T. N., Lamberts R. P., Lambert M. I. High responders and low responders: factors associated with individual variation in response to standardized training. Sports Medicine. 2014;44(8):1113–1124. doi: 10.1007/s40279-014-0197-3.

Source: PubMed

3
Prenumerera