Is T2 mapping reliable in evaluation of native and repair cartilage tissue of the knee?

Hasan Banitalebi, Christian Owesen, Asbjørn Årøen, Hang Thi Tran, Tor Åge Myklebust, Per-Henrik Randsborg, Hasan Banitalebi, Christian Owesen, Asbjørn Årøen, Hang Thi Tran, Tor Åge Myklebust, Per-Henrik Randsborg

Abstract

Purpose: To evaluate the effect of imaging plane and experience of observers on the reliability of T2 mapping of native and repair cartilage tissue of the knee.

Methods: Fifteen consecutive patients from two randomised controlled trials (RCTs) were included in this cross-sectional study. Patients with an isolated knee cartilage lesion were randomised to receive either debridement or microfracture (RCT 1) or debridement or autologous chondrocyte implantation (RCT 2). T2 mapping was performed in coronal and sagittal planes two years postoperatively. A musculoskeletal radiologist, a resident of radiology and two orthopaedic surgeons measured the T2 values independently. Intraclass Correlation Coefficient (ICC) with 95% Confidence Intervals was used to calculate the inter- and intraobserver agreement.

Results: Mean age for the patients was 36.8 ± 11 years, 8 (53%) were men. The overall interobserver agreement varied from poor to good with ICCs in the range of 0.27- 0.76 for native cartilage and 0.00 - 0.90 for repair tissue. The lowest agreement was achieved for evaluations of repair cartilage tissue. The estimated ICCs suggested higher inter- and intraobserver agreement for radiologists. On medial femoral condyles, T2 values were higher for native cartilage on coronal images (p < 0.001) and for repair tissue on sagittal images (p < 0.001).

Conclusions: The reliability of T2 mapping of articular cartilage is influenced by the imaging plane and the experience of the observers. This influence may be more profound for repair cartilage tissue. This is important to consider when using T2 mapping to measure outcomes after cartilage repair surgery.

Trial registration: ClinicalTrials.gov, NCT02637505 and NCT02636881 , registered December 2015.

Level of evidence: II, based on prospective data from two RCTs.

Keywords: Articular cartilage; Autologous chondrocyte implantation; Cartilage repair; MRI; Reliability; T2 mapping.

Conflict of interest statement

The authors declare that there is no conflict of interest.

Figures

Fig. 1
Fig. 1
Flow diagram for the inclusion of the patients in the current reliability study from the two ongoing Randomised Controlled Trials of the Norwegian Cartilage Project. ACI: Autologous Chondrocyte Implantation. *Ongoing inclusion
Fig. 2
Fig. 2
T2 maps of pre-defined ROIs (Regions of Interest) of native cartilage. a: (ROI 2) T2 map of the lateral femoral condyle on sagittal plane, between the margins of the posterior and the anterior horns of the meniscus. b: (ROI 4) T2 map of the medial femoral condyle on coronal plane at the level with the highest peak of the intercondylar eminence. The arrows indicate the boundaries of the ROIs. The sub-regions a, b and c are automatically generated for each ROI
Fig. 3
Fig. 3
T2 measurements of a treated lesion on medial femoral condyle (images from the same patient). a and d: Fat suppressed PD VISTA (Proton Density Volume Isotropic Turbo spin echo Acquisition) in sagittal and coronal planes, respectively. Arrows indicate the boundaries of the lesion. b and e: The same lesion on the first echo of multi-echo sequences as marked by arrows on sagittal and coronal images, respectively. c and f: Colour maps of the same lesion on sagittal and coronal planes, respectively
Fig. 4
Fig. 4
Box plots demonstrating variability of the measured T2 values by the observers in coronal and sagittal planes, for native and repair cartilage tissue

References

    1. Aae TF, Randsborg PH, Breen AB, Visnes H, Vindfeld S, Sivertsen EA, Løken S, Brinchmann J, Hanvold HA, Årøen A. Norwegican Cartilage Project - A study protocol for a double-blinded randomized controlled trial comparing arthroscopic microfracture with arthroscopic debridement in focal cartilage defects in the knee. BMC Musculoskelet Disord. 2016;17(1):292. doi: 10.1186/s12891-016-1156-y.
    1. Becher C, Zuhlke D, Plaas C, Ewig M, Calliess T, Stukenborg-Colsman C, Thermann H. T2-mapping at 3 T after microfracture in the treatment of osteochondral defects of the talus at an average follow-up of 8 years. Knee Surg Sport Traumatol Arthrosc. 2015;23(8):2406–2412. doi: 10.1007/s00167-014-2913-9.
    1. Buckwalter JA, Mankin HJ. Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation. Instr Course Lect. 1998;47:487–504.
    1. Dautry R, Bousson V, Manelfe J, Perozziello A, Boyer P, Loriaut P, Koch P, Silvestre A, Schouman-Claeys E, Laredo JD. Dallaudière B (2014) Correlation of MRI T2 mapping sequence with knee pain location in young patients with normal standard MRI. JBR-BTR. 2014;97(1):11–16.
    1. David-Vaudey E, Ghosh S, Ries M, Majumdar S. T2 relaxation time measurements in osteoarthritis. Magn Reson Imaging. 2004;22(5):673–682. doi: 10.1016/j.mri.2004.01.071.
    1. de Windt TS, Welsch GH, Brittberg M, Vonk LA, Marlovits S, Trattnig S, Saris DBF. Is magnetic resonance imaging reliable in predicting clinical outcome after articular cartilage repair of the knee? Am J Sports Med. 2013;41(7):1695–1702. doi: 10.1177/0363546512473258.
    1. Fullerton GD, Cameron IL, Ord VA. Orientation of tendons in the magnetic field and its effect on T2 relaxation times. Radiology. 1985;155(2):433–435. doi: 10.1148/radiology.155.2.3983395.
    1. Guermazi A, Roemer FW, Alizai H, Winalski CS, Welsch G, Brittberg M, Trattnig S. State of the art: Mr imaging after knee cartilage repair surgery. Radiology. 2015;277(1):23–43. doi: 10.1148/radiol.2015141146.
    1. Hannila I, Susanna Räinä S, Tervonen O, Ojala R, Nieminen MT. Topographical variation of T2 relaxation time in the young adult knee cartilage at 1.5T. Osteoarthr Cartil. 2009;17(12):1570–1575. doi: 10.1016/j.joca.2009.05.011.
    1. Hannila I, Lammentausta E, Tervonen O, Nieminen MT. The repeatability of T2 relaxation time measurement of human knee articular cartilage. Magn Reson Mater Physics. 2015;28(6):547–553. doi: 10.1007/s10334-015-0494-3.
    1. Joseph GB, Baum T, Alizai H, Carballido-Gamio J, Nardo L, Virayavanich W, Lynch JA, Nevitt MC, McCulloch CE, Majumdar S, Link TM. Baseline mean and heterogeneity of MR cartilage T(2) are associated with morphologic degeneration of cartilage, meniscus, and bone marrow over 3 years – data from the osteoarthritis initiative. Osteoarthritis Cartilage. 2012;20(7):727–735. doi: 10.1016/j.joca.2012.04.003.
    1. Keenan KE, Besier TF, Pauly JM, Han E, Rosenberg J, Smith RL, Delp SL, Beaupre GS, Gold GE. Prediction of glycosaminoglycan content in human cartilage by age, T1rho and T2 MRI. Osteoarthr Cartil. 2011;19(2):171–179. doi: 10.1016/j.joca.2010.11.009.
    1. Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med. 2016;15(2):155–163. doi: 10.1016/j.jcm.2016.02.012.
    1. Kurkijärvi JE, Mattila L, Ojala RO, Vasara AI, Jurvelin JS, Kiviranta I, Nieminen MT. Evaluation of cartilage repair in the distal femur after autologous chondrocyte transplantation using T2 relaxation time and dGEMRIC. Osteoarthr Cartil. 2007;15(4):372–378. doi: 10.1016/j.joca.2006.10.001.
    1. MacKay JW, Low SBL, Smith TO, Toms AP, McCaskie AW, Gilbert FJ. Systematic review and meta-analysis of the reliability and discriminative validity of cartilage compositional MRI in knee osteoarthritis. Osteoarthr Cartil. 2018;26(9):1140–1152. doi: 10.1016/j.joca.2017.11.018.
    1. Maier CF, Tan SG, Hariharan H, Potter HG. T2 quantitation of articular cartilage at 1.5 T. J Magn Reson Imaging J Magn Reson Imaging. 2003;17(3):358–364. doi: 10.1002/jmri.10263.
    1. Mosher TJ, Smith H, Dardzinski BJ, Schmithorst VJ, Smith MB. MR imaging and T2 mapping of femoral cartilage. Am J Roentgenol American Roentgen Ray Society. 2001;177(3):665–669. doi: 10.2214/ajr.177.3.1770665.
    1. Mosher TJ, Zhang Z, Reddy R, Boudhar S, Milestone BN, Morrison WB, Kwoh CK, Eckstein F, Witschey WR, Borthakur A. Knee articular cartilage damage in osteoarthritis: analysis of MR image biomarker reproducibility in ACRIN-PA 4001 multicenter trial. Radiology. 2011;258(3):832–842. doi: 10.1148/radiol.10101174.
    1. Nieminen MT, Nissi MJ, Mattila L, Kiviranta I. Evaluation of chondral repair using quantitative MRI. J Magn Reson Imaging. 2012;36(6):1287–1299. doi: 10.1002/jmri.23644.
    1. Nissi MJ, Toyras J, Laasanen MS, Rieppo J, Saarakkala S, Lappalainen R, Jurvelin JS, Nieminen MT. Proteoglycan and collagen sensitive MRI evaluation of normal and degenerated articular cartilage. J Orthop Res. 2004;22(3):557–564. doi: 10.1016/j.orthres.2003.09.008.
    1. Nissi MJ, Rieppo J, Töyräs J, Laasanen MS, Kiviranta I, Jurvelin JS, Nieminen MT. T2 relaxation time mapping reveals age- and species-related diversity of collagen network architecture in articular cartilage. Osteoarthr Cartil. 2006;14(12):1265–1271. doi: 10.1016/j.joca.2006.06.002.
    1. Randsborg P-H, Brinchmann J, Løken S, Hanvold HA, Aae TF, Årøen A. Focal cartilage defects in the knee –a randomized controlled trial comparing autologous chondrocyte implantation with arthroscopic debridement. BMC Musculoskelet Disord. 2016;17(1):117. doi: 10.1186/s12891-016-0969-z.
    1. Surowiec RK, Lucas EP, Fitzcharles EK, Petre BM, Dornan GJ, Giphart JE, LaPrade RF, Ho CP. T2 values of articular cartilage in clinically relevant subregions of the asymptomatic knee. Knee Surg Sport Traumatol Arthrosc. 2014;22:1404–1414. doi: 10.1007/s00167-013-2779-2.
    1. Terwee CB, Bot SDM, de Boer MR, van der Windt DAWM, Knol DL, Dekker J, Bouter LM, de Vet HCW. Quality criteria were proposed for measurement properties of health status questionnaires. J Clin Epidemiol. 2007;60(1):34–42. doi: 10.1016/j.jclinepi.2006.03.012.
    1. van Eck CF, Kingston RS, Crues JV, Kharrazi FD. Magnetic resonance imaging for patellofemoral chondromalacia: is there a role for T2 mapping? Orthop J Sport Med. 2017;5:2325967117740554.
    1. Wacker FK, Bolze X, Felsenberg D, Wolf K-J. Orientation-dependent changes in MR signal intensity of articular cartilage: a manifestation of the “magic angle” effect. Skeletal Radiol. 1998;27(6):306–310. doi: 10.1007/s002560050387.
    1. Walter SD, Eliasziw M, Donner A. Sample size and optimal designs for reliability studies. Stat Med Stat Med. 1998;17(1):101–110. doi: 10.1002/(SICI)1097-0258(19980115)17:1<101::AID-SIM727>;2-E.
    1. Watanabe A, Boesch C, Obata T, Anderson SE. Effect of multislice acquisition on T1 and T2 measurements of articular cartilage at 3T. J Magn Reson Imaging. 2007;26(1):109–117. doi: 10.1002/jmri.20962.
    1. Welsch GH, Mamisch TC, Domayer SE, Dorotka R, Kutscha-Lissberg F, Marlovits S, White LM, Trattnig S. Cartilage T2 assessment at 3-T MR imaging. In Vivo differentiation of normal hyaline cartilage from reparative tissue after two cartilage repair procedures—initial experience. Radiology. 2008;247:154–161. doi: 10.1148/radiol.2471070688.
    1. Welsch GH, Trattnig S, Hughes T, Quirbach S, Olk A, Blanke M, Marlovits S, Mamisch TC. T2 and T2* mapping in patients after matrix-associated autologous chondrocyte transplantation: initial results on clinical use with 3.0-Tesla MRI. Eur Radiol. 2010;20(6):1515–1523. doi: 10.1007/s00330-009-1669-y.
    1. Wong CS, Yan CH, Gong NJ, Li T, Chan Q, Chu YC. Imaging biomarker with T1rho and T2 mappings in osteoarthritis - in vivo human articular cartilage study. Eur J Radiol. 2013;82(4):647–650. doi: 10.1016/j.ejrad.2012.11.036.
    1. Yao W, Qu N, Lu Z, Yang S. The application of T1 and T2 relaxation time and magnetization transfer ratios to the early diagnosis of patellar cartilage osteoarthritis. Skelet Radiol. 2009;38(11):1055–1062. doi: 10.1007/s00256-009-0769-8.

Source: PubMed

3
Prenumerera