A Functional Variant of CXCL16 Is Associated With Predisposition to Sepsis and MODS in Trauma Patients: Genetic Association Studies

Jianhui Sun, Huacai Zhang, Di Liu, Li Cui, Qiang Wang, Lebin Gan, Dalin Wen, Jun Wang, Juan Du, Hong Huang, Anqiang Zhang, Jin Deng, Jianxin Jiang, Ling Zeng, Jianhui Sun, Huacai Zhang, Di Liu, Li Cui, Qiang Wang, Lebin Gan, Dalin Wen, Jun Wang, Juan Du, Hong Huang, Anqiang Zhang, Jin Deng, Jianxin Jiang, Ling Zeng

Abstract

Purpose: CXC chemokines are mediators which mediate immune cells migration to sites of inflammation and injury. Chemokine C-X-C motif ligand 16 (CXCL16) plays an important role in the occurrence and development of sepsis through leukocyte chemotaxis, leukocyte adhesion and endotoxin clearance. In this study, we selected a set of tagging single nucleotide polymorphisms (tag SNPs) in the CXCL16 gene and investigated their clinical relevance to the development of sepsis and multiple organ dysfunction syndrome (MODS) in patients with major trauma in three independent Chinese Han populations.

Methods: A total of 1,620 major trauma patients were enrolled in this study. Among these patients, 920 came from Chongqing in western China, 350 came from Zhejiang Province in eastern China, and 350 came from Guizhou Province in southwestern China. The improved multiplex ligation detection reaction (iMLDR) method was employed in the genotyping and genetic association analyses to determine the associations between CXCL16 haplotypes and sepsis morbidity rate and higher MOD scores in three cohorts.

Results: Only CXCL16 T123V181 haplotype was associated with an increased risk for sepsis morbidity and higher MOD scores in the three cohorts (OR = 1.89, P = 0.001 for the Chongqing cohort; OR = 1.76, P = 0.004 for the Zhejiang cohort; OR = 1.55, P = 0.012 for the Guizhou cohort). The effect of T123V181 haplotype on the chemotaxis, migration and endotoxin clearance of immune cells were further observed. Protein modeling analysis showed that T123 and V181 might alter the structure of the CXCL16 active center. Thus it enhanced the chemotaxis and adhesion ability of immunocytes.

Conclusion: We demonstrate the mechanism of CXCL16 T123V181 haplotype which regulates the sepsis morbidity rate and thus provide a new biomarker for early diagnosis of sepsis and MODS.

Clinical trial registration: www.ClinicalTrials.gov, identifier NCT01713205 (https://www.clinicaltrials.gov/ct2/results?cond=&term=+NCT01713205&cntry=&state=&city=&dist=).

Keywords: CXCL16; multiple organ dysfunction; sepsis; single nucleotide polymorphisms; trauma.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Sun, Zhang, Liu, Cui, Wang, Gan, Wen, Wang, Du, Huang, Zhang, Deng, Jiang and Zeng.

Figures

FIGURE 1
FIGURE 1
Overview of tagging single nucleotide polymorphisms (tag SNPs) in the CXCL16 gene. (A) CXCL16 gene organization and the location of two missense mutations, I123T (rs1050998) and A181V (rs2277680), on chromosome 17. (B) Location of SNPs in the CXCL16 gene with a minor allele frequency ≥5%. A linkage disequilibrium (LD) plot of these SNPs is displayed by a color scheme. Black represents very high LD (r2 = 1.0), and white indicates the absence of correlation (r2 = 0) between two SNPs. The r2 between I123T and A181V is 1.0.
FIGURE 2
FIGURE 2
T123V181 haplotype enhances the chemotaxis and adhesion of inflammatory cells. (A) Map of the CXCL16 expression plasmid. (B) Schematic diagram of the chemotactic assay. The percentage of THP-1 cells recruited to the lower chamber was calculated to represent chemotaxis. (C) The chemotaxis of the CXCL16-T123V181 protein was significantly higher than that of the other three proteins (**P < 0.01). (D) The percentage of THP-1 cells with green fluorescence expressing transmembrane forms of CXCL16-T123V181 protein attached to RAW264.7 cells was calculated to represent the adhesion ability. (E) The adhesion ability of cells expressing CXCL16-T123V181 protein was significantly higher than that of the other three proteins (**P < 0.01).
FIGURE 3
FIGURE 3
Conservative analysis and molecular modeling of I123T and A181V. (A) Conservative analysis shows that the two missense mutations are both located in the non-conserved region of the CXCL16 gene. (B) The structural diagram shows that the active center of the CXCL16 protein was changed by V → A substitution, which might make the active center of the CXCL16 protein smaller.

References

    1. Abel S., Hundhausen C., Mentlein R., Schulte A., Berkhout T. A., Broadway N., et al. (2004). The transmembrane CXC-chemokine ligand 16 is induced by IFN-gamma and TNF-alpha and shed by the activity of the disintegrin-like metalloproteinase ADAM10. J. Immunol. 172 6362–6372. 10.4049/jimmunol.172.10.6362
    1. Allam R., Kumar S. V., Darisipudi M. N., Anders H. J. (2014). Extracellular histones in tissue injury and inflammation. J. Mol. Med. (Berl) 92 465–472. 10.1007/s00109-014-1148-z
    1. Aslanian A. M., Charo I. F. (2006). Targeted disruption of the scavenger receptor and chemokine CXCL16 accelerates atherosclerosis. Circulation 114 583–590. 10.1161/circulationaha.105.540583
    1. Borst O., Schaub M., Walker B., Sauter M., Muenzer P., Gramlich M., et al. (2014). CXCL16 is a novel diagnostic marker and predictor of mortality in inflammatory cardiomyopathy and heart failure. Int. J. Cardiol. 176 896–903. 10.1016/j.ijcard.2014.08.033
    1. Carossino M., Dini P., Kalbfleisch T. S., Loynachan A. T., Canisso I. F., Cook R. F., et al. (2019). Equine arteritis virus long-term persistence is orchestrated by CD8+ T lymphocyte transcription factors, inhibitory receptors, and the CXCL16/CXCR6 axis. PLoS Pathog 15:e1007950. 10.1371/journal.ppat.1007950
    1. Chung B., Esmaeili A. A., Gopalakrishna-Pillai S., Murad J. P., Andersen E. S., Kumar Reddy N., et al. (2017). Human brain metastatic stroma attracts breast cancer cells via chemokines CXCL16 and CXCL12. NPJ Breast Cancer 3:6.
    1. Daly M. J., Rioux J. D., Schaffner S. F., Hudson T. J., Lander E. S. (2001). High-resolution haplotype structure in the human genome. Nat. Genet. 29 229–232. 10.1038/ng1001-229
    1. Dellinger R. P., Levy M. M., Rhodes A., Annane D., Gerlach H., Opal S. M., et al. (2013). Surviving sepsis campaign guidelines committee including the pediatric subgroup. surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit. Care Med. 41 580–637.
    1. Fahy O. L., Townley S. L., McColl S. R. (2006). CXCL16 regulates cell-mediated immunity to Salmonella enterica serovar Enteritidis via promotion of gamma interferon production. Infect. Immun. 74 6885–6894. 10.1128/iai.01065-06
    1. Fleischmann C., Scherag A., Adhikari N. K., Hartog C. S., Tsaganos T., Schlattmann P., et al. (2016). Assessment of global incidence and mortality of hospital-treated sepsis. current estimates and limitations. Am. J. Respir. Crit. Care Med. 193 259–272. 10.1164/rccm.201504-0781oc
    1. Gan L., Hu C., Deng Z., Lu H., Sun J., Peng G., et al. (2019). Rs1982809 is a functional biomarker for the prognosis of severe post-traumatic sepsis and MODs. Exp. Biol. Med. (Maywood) 244 1438–1445. 10.1177/1535370219880490
    1. Garcia G. E., Truong L. D., Li P., Zhang P., Johnson R. J., Wilson C. B., et al. (2007). Inhibition of CXCL16 attenuates inflammatory and progressive phases of anti-glomerular basement membrane antibody-associated glomerulonephritis. Am. J. Pathol. 170 1485–1496. 10.2353/ajpath.2007.060065
    1. Gu W., Jiang J. X. (2010). Genetic polymorphisms and posttraumatic complications. Comp. Funct. Genomics 2010:814086.
    1. Gu W., Zeng L., Zhou J., Jiang D. P., Zhang L., Du D. Y., et al. (2010). Clinical relevance of 13 cytokine gene polymorphisms in Chinese major trauma patients. Intens Care Med. 36 1261–1265. 10.1007/s00134-010-1797-5
    1. Kee J. Y., Ito A., Hojo S., Hashimoto I., Igarashi Y., Tsuneyama K., et al. (2014). CXCL16 suppresses liver metastasis of colorectal cancer by promoting TNF-α-induced apoptosis by tumor-associated macrophages. BMC Cancer 14:949. 10.1186/1471-2407-14-949
    1. Kelley L. A., Mezulis S., Yates C. M., Wass M. N., Sternberg M. J. (2015). The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10 845–858. 10.1038/nprot.2015.053
    1. Kim M. J., Sun H. J., Song Y. S., Yoo S. K., Kim Y. A., Seo J. S., et al. (2019). CXCL16 positively correlated with M2-macrophage infiltration, enhanced angiogenesis, and poor prognosis in thyroid cancer. Sci. Rep. 9:13288.
    1. Lepennetier G., Hracsko Z., Unger M., Van Griensven M., Grummel V., Krumbholz M., et al. (2019). Cytokine and immune cell profiling in the cerebrospinal fluid of patients with neuro-inflammatory diseases. J. Neuroinflamm. 16:219.
    1. Li C., Zhao J., Sun L., Yao Z., Liu R., Huang J., et al. (2012). RANKL downregulates cell surface CXCR6 expression through JAK2/STAT3 signaling pathway during osteoclastogenesis. Biochem. Biophys. Res. Commun. 429 156–162. 10.1016/j.bbrc.2012.10.122
    1. Lu H., Wen D., Sun J., Zeng L., Du J., Du D., et al. (2019). Enhancer polymorphism rs10865710 associated with traumatic sepsis is a regulator of PPARG gene expression. Crit. Care 23:430.
    1. Marshall J. C., Cook D. J., Christou N. V., Bernard G. R., Sprung C. L., Sibbald W. J. (1995). Multiple organ dysfunction score: a reliable descriptor of a complex clinical outcome. Crit. Care Med. 23 1638–1652. 10.1097/00003246-199510000-00007
    1. Matloubian M., David A., Engel S., Ryan J. E., Cyster J. G. (2000). A transmembrane CXC chemokine is a ligand for HIV-coreceptor Bonzo. Nat. Immunol. 1 298–304. 10.1038/79738
    1. McDonald B., Urrutia R., Yipp B. G., Jenne C. N., Kubes P. (2012). Intravascular neutrophil extracellular traps capture bacteria from the bloodstream during sepsis. Cell Host Microbe 12 324–333. 10.1016/j.chom.2012.06.011
    1. Olszak T., An D., Zeissig S., Vera M. P., Richter J., Franke A., et al. (2012). Microbial exposure during early life has persistent effects on natural killer T cell function. Science 336 489–493. 10.1126/science.1219328
    1. Paudel S., Baral P., Ghimire L., Bergeron S., Jin L., DeCorte J. A., et al. (2019). CXCL1 regulates neutrophil homeostasis in pneumoniaderived sepsis caused by Streptococcus pneumoniae serotype 3. Blood 133 1335–1345. 10.1182/blood-2018-10-878082
    1. Petit S. J., Chayen N. E., Pease J. E. (2008). Site-directed mutagenesis of the chemokine receptor CXCR6 suggests a novel paradigm for interactions with the ligand CXCL16. Eur. J. Immunol. 38 2337–2350. 10.1002/eji.200838269
    1. Petit S. J., Wise E. L., Chambers J. C., Sehmi J., Chayen N. E., Kooner J. S., et al. (2011). The CXCL16 A181V mutation selectively inhibits monocyte adhesion to CXCR6 but is not associated with human coronary heart disease. Arterioscler Thromb. Vasc. Biol. 31 914–920. 10.1161/atvbaha.110.220558
    1. Prescott H. C., Angus D. C. (2018). Enhancing recovery from sepsis: a review. JAMA 319 62–75. 10.1001/jama.2017.17687
    1. Satake S., Hirai H., Hayashi Y., Shime N., Tamura A., Yao H., et al. (2012). C/EBPb is involved in the amplification of early granulocyte precursors during candidemiainduced “emergency” granulopoiesis. J. Immunol. 189 4546–4555. 10.4049/jimmunol.1103007
    1. Seymour C. W., Gesten F., Prescott H. C., Friedrich M. E., Iwashyna T. J., Phillips G. S., et al. (2017). Time to treatment and mortality during mandated emergency care for sepsis. N. Engl. J. Med. 376 2235–2244. 10.1056/nejmoa1703058
    1. Shimaoka T., Kume N., Minami M., Hayashida K., Kataoka H., Kita T., et al. (2000). Molecular cloning of a novel scavenger receptor for oxidized low density lipoprotein. SR-PSOX, on macrophages. J. Biol. Chem. 275 40663–40666. 10.1074/jbc.c000761200
    1. Shimaoka T., Nakayama T., Kume N., Takahashi S., Yamaguchi J., Minami M., et al. (2003). SR-PSOX/CXC chemokine ligand 16 mediates bacterial phagocytosis by APCs through its chemokine domain. J. Immunol. 171 1647–1651. 10.4049/jimmunol.171.4.1647
    1. Singer M., Deutschman C. S., Seymour C. W., Shankar-Hari M., Annane D., Bauer M., et al. (2016). The Third International Consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 315 801–810.
    1. Singh R., Kapur N., Mir H., Singh N., Lillard J. W., Jr., Singh S. (2016). CXCR6-CXCL16 axis promotes prostate cancer by mediating cytoskeleton rearrangement via Ezrin activation and αvβ3 integrin clustering. Oncotarget 7 7343–7353. 10.18632/oncotarget.6944
    1. Sørensen T. I., Nielsen G. G., Andersen P. K., Teasdale T. W. (1988). Genetic and enviromental influences on premature death and in adult adoptees. N. Engl. J. Med. 318 727–732. 10.1056/nejm198803243181202
    1. Stojković L., Stanković A., Djurić T., Dinèić E., Alavantić D., Zivković M. (2014). The gender-specific association of CXCL16 A181V gene polymorphism with susceptibility to multiple sclerosis, and its effects on PBMC mRNA and plasma soluble CXCL16 levels: preliminary findings. J. Neurol. 261 1544–1551. 10.1007/s00415-014-7379-7
    1. Stüber F., Petersen M., Bokelmann F., Schade U. (1996). A genomic polymorphism within the tumor necrosis factor locus influences plasma tumor necrosis factor-alpha concentrations and outcome of patients with severe sepsis. Crit. Care Med. 24 381–384. 10.1097/00003246-199603000-00004
    1. Tohyama M., Sayama K., Komatsuzawa H., Hanakawa Y., Shirakata Y., Dai X., et al. (2007). CXCL16 is a novel mediator of the innate immunity of epidermal keratinocytes. Int. Immunol. 19 1095–1102. 10.1093/intimm/dxm083
    1. van Lieshout A. W., van der Voort R., Toonen L. W., van Helden S. F., Figdor C. G., van Riel P. L., et al. (2009). Regulation of CXCL16 expression and secretion by myeloid cells is not altered in rheumatoid arthritis. Ann. Rheum. Dis. 68 1036–1043. 10.1136/ard.2007.086611
    1. Wang K. D., Liu Z. Z., Wang R. M., Wang Y. J., Zhang G. J., Su J. R., et al. (2010). Chemokine CXC Ligand 16 serum concentration but not A181V genotype is associated with atherosclerotic stroke. Clin. Chim. Acta 411 1447–1451. 10.1016/j.cca.2010.05.033
    1. Wang S., Li W., Liu S., Xu J. (2016). RaptorX-Property: a web server for protein structure property prediction. Nucleic Acids Res. 44 W430–W435.
    1. Wang Z., Rui T., Yang M., Valiyeva F., Kvietys P. R. (2008). Alveolar macrophages from septic mice promote polymorphonuclear leukocyte transendothelial migration via an endothelial cell Src kinase/NADPH oxidase pathway. J. Immunol. 181 8735–8744. 10.4049/jimmunol.181.12.8735
    1. Webb B., Sali A. (2016). Comparative protein structure modeling using modeller. Curr. Protoc. Bioinform. 54 5.6.1–5.6.37.
    1. Wilbanks A., Zondlo S. C., Murphy K., Mak S., Soler D., Langdon P., et al. (2001). Expression cloning of the STRL33/BONZO/TYMSTR ligand reveals elements of CC. CXC, and CX3C chemokines. J. Immunol. 166 5145–5154. 10.4049/jimmunol.166.8.5145
    1. Wuttge D. M., Zhou X., Sheikine Y., Wågsäter D., Stemme V., Hedin U., et al. (2004). CXCL16/SR-PSOX is an interferon-regulated chemokine and scavenger receptor expressed in atherosclerotic lesions. Arterioscler Thromb. Vasc. Biol. 24 750–755. 10.1161/01.atv.0000124102.11472.36
    1. Xu S., Cheng J., Cai M. Y., Liang L. L., Cen J. M., Yang X. L., et al. (2017). The impact of tagSNPs in CXCL16 gene on the risk of myocardial infarction in a chinese han population. Dis. Markers 2017:9463272.
    1. Yamauchi R., Tanaka M., Kume N., Minami M., Kawamoto T., Togi K., et al. (2004). Upregulation of SR-PSOX/CXCL16 and recruitment of CD8+ T cells in cardiac valves during inflammatory valvular heart disease. Arterioscler Thromb. Vasc. Biol. 24 282–287. 10.1161/01.atv.0000114565.42679.c6
    1. Zeng L., Gu W., Chen K., Jiang D., Zhang L., Du D., et al. (2009). Clinical relevance of the interleukin 10 promoter polymorphisms in Chinese Han patients with major trauma: genetic association studies. Crit. Care 13:R188.
    1. Zeng L., Gu W., Zhang A. Q., Zhang M., Zhang L. Y., Du D. Y., et al. (2012a). A functional variant of lipopolysaccharide binding protein predisposes to sepsis and organ dysfunction in patients with major trauma. Ann. Surg. 255 147–157. 10.1097/sla.0b013e3182389515
    1. Zeng L., Zhang A. Q., Gu W., Zhou J., Zhang L. Y., Du D. Y., et al. (2012b). Identification of Haplotype tag SNPs within the whole myeloid Differentiation-2 gene and their clinical relevance in patients with major trauma. Shock 37 366–372. 10.1097/shk.0b013e3182498c8f
    1. Zeng L., Zhang A. Q., Gu W., Chen K. H., Jiang D. P., Zhang L. Y., et al. (2011). Clinical relevance of single nucleotide polymorphisms of the high mobility group box 1 protein gene in patients with major trauma in Southwest China. Surgery 151 427–436. 10.1016/j.surg.2011.07.075
    1. Zhang H., Nguyen-Jackson H., Panopoulos A. D., Li H. S., Murray P. J., Watowich S. S. (2010). STAT3 controls myeloid progenitor growth during emergency granulopoiesis. Blood 116 2462–2471. 10.1182/blood-2009-12-259630
    1. Zhou F., Wang J., Wang K., Zhu X., Pang R., Li X., et al. (2016). Serum CXCL16 as a novel biomarker of coronary artery disease in Type 2 diabetes mellitus: a pilot study. Ann. Clin. Lab. Sci. 46 184–189.
    1. Zivković M., Djurić T., Stojković L., Jovanović I., Konèar I., Davidović L., et al. (2015). CXCL16 haplotypes in patients with human carotid atherosclerosis preliminary results. J. Atheroscler. Thromb. 22 10–20.
    1. Zuo S., Zhu Z., Liu Y., Li H., Song S., Yin S. (2019). CXCL16 induces the progression of pulmonary fibrosis through promoting the phosphorylation of STAT3. Can. Respir. J. 2019:2697376.

Source: PubMed

3
Prenumerera