The Memory Aid study: protocol for a randomized controlled clinical trial evaluating the effect of computer-based working memory training in elderly patients with mild cognitive impairment (MCI)

Marianne M Flak, Susanne S Hernes, Linda Chang, Thomas Ernst, Vanessa Douet, Jon Skranes, Gro C C Løhaugen, Marianne M Flak, Susanne S Hernes, Linda Chang, Thomas Ernst, Vanessa Douet, Jon Skranes, Gro C C Løhaugen

Abstract

Background: Mild cognitive impairment (MCI) is a condition characterized by memory problems that are more severe than the normal cognitive changes due to aging, but less severe than dementia. Reduced working memory (WM) is regarded as one of the core symptoms of an MCI condition. Recent studies have indicated that WM can be improved through computer-based training. The objective of this study is to evaluate if WM training is effective in improving cognitive function in elderly patients with MCI, and if cognitive training induces structural changes in the white and gray matter of the brain, as assessed by structural MRI.

Methods/designs: The proposed study is a blinded, randomized, controlled trail that will include 90 elderly patients diagnosed with MCI at a hospital-based memory clinic. The participants will be randomized to either a training program or a placebo version of the program. The intervention is computerized WM training performed for 45 minutes of 25 sessions over 5 weeks. The placebo version is identical in duration but is non-adaptive in the difficulty level of the tasks. Neuropsychological assessment and structural MRI will be performed before and 1 month after training, and at a 5-month folllow-up.

Discussion: If computer-based training results in positive changes to memory functions in patients with MCI this may represent a new, cost-effective treatment for MCI. Secondly, evaluation of any training-induced structural changes to gray or white matter will improve the current understanding of the mechanisms behind effective cognitive interventions in patients with MCI.

Trial registration: ClinicalTrials.gov NCT01991405. November 18, 2013.

References

    1. Petersen RC, Negash S. Mild cognitive impairment: an overview. CNS Spectr. 2008;13(1):45–53.
    1. Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E. Mild cognitive impairment: clinical characterization and outcome. Arch Neurol. 1999;56(3):303–308. doi: 10.1001/archneur.56.3.303.
    1. Saunders NL, Summers MJ. Attention and working memory deficits in mild cognitive impairment. J Clin Exp Neuropsychol. 2010;32(4):350–357. doi: 10.1080/13803390903042379.
    1. Baddeley A. Working memory: looking back and looking forward. Nat Rev Neurosci. 2003;4(10):829–839. doi: 10.1038/nrn1201.
    1. Baddeley AD, Hitch GJL. In: The psychology of learning and motivation: Advances in research and theory, Volume 8. Bower GA, editor. New York: Academic; 1974. Working memory; pp. 47–89.
    1. Fry AF, Hale S. Relationships among processing speed, working memory, and fluid intelligence in children. Biol Psychol. 2000;54(1–3):1–34.
    1. Salthouse TA. Mental exercise and mental aging: evaluating the validity of the "Use it or lose it" hypothesis. Perspect Psychol Sci. 2006;1:68–87. doi: 10.1111/j.1745-6916.2006.00005.x.
    1. Sitzer DI, Twamley EW, Jeste DV. Cognitive training in Alzheimer's disease: a meta-analysis of the literature. Acta Psychiatr Scand. 2006;114(2):75–90. doi: 10.1111/j.1600-0447.2006.00789.x.
    1. Jolles DD, Crone EA. Training the developing brain: a neurocognitive perspective. Front Hum Neurosci. 2012;6:76.
    1. Klingberg T. Training and plasticity of working memory. Trends Cogn Sci. 2010;14(7):317–324. doi: 10.1016/j.tics.2010.05.002.
    1. Klingberg T. Development of a superior frontal-intraparietal network for visuo-spatial working memory. Neuropsychologia. 2006;44(11):2171–2177. doi: 10.1016/j.neuropsychologia.2005.11.019.
    1. Engvig A, Fjell AM, Westlye ET, Moberget T, Sundseth Ø, Larsen VA, Walhovd KB. Effects of memory training on cortical thickness in the elderly. Neuroimage. 2010;52(4):1667–1676. doi: 10.1016/j.neuroimage.2010.05.041.
    1. Takeuchi H, Sekiguchi A, Taki Y, Yokoyama S, Yomogida Y, Komuro N, Yamanouchi T, Suzuki S, Kawashima R. Training of working memory impacts structural connectivity. J Neurosci. 2010;30(9):3297–3303. doi: 10.1523/JNEUROSCI.4611-09.2010.
    1. Takeuchi H, Taki Y, Hashizume H, Sassa Y, Nagase T, Nouchi R, Kawashima R. Effects of training of processing speed on neural systems. J Neurosci. 2011;31(34):12139–12148. doi: 10.1523/JNEUROSCI.2948-11.2011.
    1. Johansson B, Tornmalm M. Working memory training for patients with acquired brain injury: effects in daily life. Scand J Occup Ther. 2012;19(2):176–183. doi: 10.3109/11038128.2011.603352.
    1. Stott J, Spector A. A review of the effectiveness of memory interventions in mild cognitive impairment (MCI) Int Psychogeriatr. 2011;23(4):526–538. doi: 10.1017/S1041610210001973.
    1. Thorell LB, Lindqvist S, Bergman Nutley S, Bohlin G, Klingberg T. Training and transfer effects of executive functions in preschool children. Dev Sci. 2009;12(1):106–113. doi: 10.1111/j.1467-7687.2008.00745.x.
    1. Bergman Nutley S, Söderqvist S, Bryde S, Thorell LB, Humphreys K, Klingberg T. Gains in fluid intelligence after training non-verbal reasoning in 4-year-old children: a controlled, randomized study. Dev Sci. 2011;14(3):591–601. doi: 10.1111/j.1467-7687.2010.01022.x.
    1. Gibson BS, Gondoli DM, Johnson AC, Steeger CM, Dobrzenski BA, Morrissey RA. Component analysis of verbal versus spatial working memory training in adolescents with ADHD: a randomized, controlled trial. Child Neuropsychol. 2011;17(6):546–563. doi: 10.1080/09297049.2010.551186.
    1. Roughan L, Hadwin JA. The impact of working memory training in young people with social, emotional and behavioural difficulties. Learn Individ Differ. 2011;21(6):759–764. doi: 10.1016/j.lindif.2011.07.011.
    1. Diamond A, Lee K. Interventions shown to aid executive function development in children 4 to 12 years old. Science. 2011;333(6045):959–964. doi: 10.1126/science.1204529.
    1. Løhaugen GCC, Antonsen I, Håberg A, Gramstad A, Vik T, Brubakk AM, Skranes J. Computerized working memory training improves function in adolescents born at extremely low birth weight. J Pediatr. 2011;158(4):555–U56. doi: 10.1016/j.jpeds.2010.09.060.
    1. Løhaugen GCC, Gramstad A, Evensen KA, Martinussen M, Lindqvist S, Indredavik M, Vik T, Brubakk AM, Skranes J. Cognitive profile in young adults born preterm at very low birthweight. Dev Med Child Neurol. 2010;52(12):1133–1138. doi: 10.1111/j.1469-8749.2010.03743.x.
    1. Dahlin KIE. Effects of working memory training on reading in children with special needs. Read Writ. 2011;24(4):479–491. doi: 10.1007/s11145-010-9238-y.
    1. Holmes J, Place M, Dunning DL, Hilton KA, Elliott JG. Working memory deficits can be overcome: impacts of training and medication on working memory in children with ADHD. Appl Cogn Psychol. 2010;24(6):827–836. doi: 10.1002/acp.1589.
    1. Kronenberger WG, Pisoni DB, Henning SC, Colson BG, Hazzard LM. Working memory training for children with cochlear implants: a pilot study. J Speech Lang Hearing Res. 2011;54(4):1182–1196. doi: 10.1044/1092-4388(2010/10-0119).
    1. Lundqvist A, Grundström K, Samuelsson K, Rönnberg J. Computerized training of working memory in a group of patients suffering from acquired brain injury. Brain Inj. 2010;24(10):1173–1183. doi: 10.3109/02699052.2010.498007.
    1. Mezzacappa E, Buckner JC. Working memory training for children with attention problems or hyperactivity: a school-based pilot study. Sch Ment Heal. 2010;2(8):202–208.
    1. Klingberg T, Forssberg H, Westerberg H. Training of working memory in children with ADHD. J Clin Exp Neuropsychol. 2002;24(6):781–791. doi: 10.1076/jcen.24.6.781.8395.
    1. Olesen PJ, Westerberg H, Klingberg T. Increased prefrontal and parietal activity after training of working memory. Nat Neurosci. 2004;7(1):75–79. doi: 10.1038/nn1165.
    1. Westerberg H, Klingberg T. Changes in cortical activity after training of working memory–a single-subject analysis. Physiol Behav. 2007;92(1–2):186–192.
    1. Westerberg H, Jacobaeus H, Hirvikoski T, Clevberger P, Ostensson ML, Bartfai A, Klingberg T. Computerized working memory training after stroke–a pilot study. Brain Inj. 2007;21(1):21–29. doi: 10.1080/02699050601148726.
    1. Gates J, Sachdev PS, Fiatarone Singh MA, Valenzuela M. Cognitive and memory training in adults at risk of dementia: a systematic review. BMC Geriatr. 2011;11:55. doi: 10.1186/1471-2318-11-55.
    1. Li H, Li J, Li N, Li B, Wang P, Zhou T. Cognitive intervention for persons with mild cognitive impairment: a meta-analysis. Ageing Res Rev. 2011;10(2):285–296. doi: 10.1016/j.arr.2010.11.003.
    1. Bellander M, Brehmer Y, Westerberg H, Karlsson S, Fürth D, Bergman O, Eriksson E, Bäckman L. Preliminary evidence that allelic variation in the LMX1A gene influences training-related working memory improvement. Neuropsychologia. 2011;49(7):1938–1942. doi: 10.1016/j.neuropsychologia.2011.03.021.
    1. Soderqvist S, Bergman Nutley S, Peyrard-Janvid M, Matsson H, Humphreys K, Kere J, Klingberg T. Dopamine, working memory, and training induced plasticity: implications for developmental research. Dev Psychol. 2012;48(3):836–843.
    1. Bäckman L, Nyberg L, Soveri A, Johansson J, Andersson M, Dahlin E, Neely AS, Virta J, Laine M, Rinne JO. Effects of working-memory training on striatal dopamine release. Science. 2011;333(6043):784.
    1. McNab F, Varrone A, Farde L, Jucaite A, Bystritsky P, Forssberg H, Klingberg T. Changes in cortical dopamine D1 receptor binding associated with cognitive training. Science. 2009;323(5915):800–802. doi: 10.1126/science.1166102.
    1. Brehmer Y, Westerberg H, Bellander M, Fürth D, Karlsson S, Bäckman L. Working memory plasticity modulated by dopamine transporter genotype. Neurosci Lett. 2009;467(2):117–120. doi: 10.1016/j.neulet.2009.10.018.
    1. Durstewitz D, Seamans JK. The computational role of dopamine D1 receptors in working memory. Neural Netw. 2002;15(4–6):561–572.
    1. Schulz KF, Altman DG, Moher D. CONSORT Group. CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. Int J Surg. 2011;9(8):672–677. doi: 10.1016/j.ijsu.2011.09.004.
    1. Boutron I, Moher D, Altman DG, Schulz K, Ravaud P. for the CONSORT group. Extending the CONSORT statement to randomized trials of nonpharmacologic treatment: explanation and elaboration. Ann Intern Med. 2008;148:W-60–W-66.
    1. D'Esposito M, Postle BR, Rypma B. Prefrontal cortical contributions to working memory: evidence from event-related fMRI studies. Exp Brain Res. 2000;133(1):3–11. doi: 10.1007/s002210000395.
    1. Rabin LA, Paré N, Saykin AJ, Brown MJ, Wishart HA, Flashman LA, Santulli RB. Differential memory test sensitivity for diagnosing amnestic mild cognitive impairment and predicting conversion to Alzheimer's disease. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn. 2009;16(3):357–376. doi: 10.1080/13825580902825220.
    1. Lezak MD, Howieson DB, Loring DW. Neuropsychological assessment. New York: Oxford University Press; 2004.
    1. Klingberg T, Fernell E, Olesen PJ, Johnson M, Gustafsson P, Dahlström K, Gillberg CG, Forssberg H, Westerberg H. Computerized training of working memory in children with ADHD–a randomized, controlled trial. J Am Acad Child Adolesc Psychiatry. 2005;44(2):177–186. doi: 10.1097/00004583-200502000-00010.
    1. Brehmer Y, Westerberg H, Backman L. Working-memory training in younger and older adults: training gains, transfer, and maintenance. Front Hum Neurosci. 2012;6:63.
    1. University_of_Oxford. FMRIB Software Library, Release 4.1. University_of_Oxford. FMRIB Software Library, Release 4.1. 2008. [cited 2012 01.09]; Available from:
    1. Biomedical_Imaging, A.A.M.C. Freesurfer image analysis suite (cited 01.05 2014). Available from: .
    1. Scarmeas N, Stern Y. Cognitive reserve: implications for diagnosis and prevention of Alzheimer's disease. Curr Neurol Neurosci Rep. 2004;4(5):374–380. doi: 10.1007/s11910-004-0084-7.

Source: PubMed

3
Prenumerera