OF-Pelvis classification of osteoporotic sacral and pelvic ring fractures

Bernhard W Ullrich, Klaus J Schnake, Ulrich J A Spiegl, Philipp Schenk, Thomas Mendel, Lars Behr, Philipp Bula, Laura B Flücht, Alexander Franck, Erol Gercek, Sebastian Grüninger, Philipp Hartung, Cornelius Jacobs, Sebastian Katscher, Friederike Klauke, Katja Liepold, Christian W Müller, Michael Müller, Georg Osterhoff, Axel Partenheimer, Stefan Piltz, Marion Riehle, Daniel Sauer, Max Joseph Scheyerer, Philipp Schleicher, Gregor Schmeiser, René Schmidt, Matti Scholz, Holger Siekmann, Kai Sprengel, Dietrich Stoevesandt, Akhil Verheyden, Volker Zimmermann, Spine Section of the German Society for Orthopaedics and Trauma, Bernhard W Ullrich, Klaus J Schnake, Ulrich J A Spiegl, Philipp Schenk, Thomas Mendel, Lars Behr, Philipp Bula, Laura B Flücht, Alexander Franck, Erol Gercek, Sebastian Grüninger, Philipp Hartung, Cornelius Jacobs, Sebastian Katscher, Friederike Klauke, Katja Liepold, Christian W Müller, Michael Müller, Georg Osterhoff, Axel Partenheimer, Stefan Piltz, Marion Riehle, Daniel Sauer, Max Joseph Scheyerer, Philipp Schleicher, Gregor Schmeiser, René Schmidt, Matti Scholz, Holger Siekmann, Kai Sprengel, Dietrich Stoevesandt, Akhil Verheyden, Volker Zimmermann, Spine Section of the German Society for Orthopaedics and Trauma

Abstract

Objectives: Osteoporotic fractures of the pelvis (OFP) are an increasing issue in orthopedics. Current classification systems (CS) are mostly CT-based and complex and offer only moderate to substantial inter-rater reliability (interRR) and intra-rater reliability (intraRR). MRI is thus gaining importance as a complement. This study aimed to develop a simple and reliable CT- and MRI-based CS for OFP.

Methods: A structured iterative procedure was conducted to reach a consensus among German-speaking spinal and pelvic trauma experts over 5 years. As a result, the proposed OF-Pelvis CS was developed. To assess its reliability, 28 experienced trauma and orthopedic surgeons categorized 25 anonymized cases using X-ray, CT, and MRI scans twice via online surveys. A period of 4 weeks separated the completion of the first from the second survey, and the cases were presented in an altered order. While 13 of the raters were also involved in developing the CS (developing raters (DR)), 15 user raters (UR) were not deeply involved in the development process. To assess the interRR of the OF-Pelvis categories, Fleiss' kappa (κF) was calculated for each survey. The intraRR for both surveys was calculated for each rater using Kendall's tau (τK). The presence of a modifier was calculated with κF for interRR and Cohen's kappa (κC) for intraRR.

Results: The OF-Pelvis consists of five subgroups and three modifiers. Instability increases from subgroups 1 (OF1) to 5 (OF5) and by a given modifier. The three modifiers can be assigned alone or in combination. In both surveys, the interRR for subgroups was substantial: κF = 0.764 (Survey 1) and κF = 0.790 (Survey 2). The interRR of the DR and UR was nearly on par (κF Survey 1/Survey 2: DR 0.776/0.813; UR 0.748/0.766). The agreement for each of the five subgroups was also strong (κF min.-max. Survey 1/Survey 2: 0.708-0.827/0.747-0.852). The existence of at least one modifier was rated with substantial agreement (κF Survey 1/Survey 2: 0.646/0.629). The intraRR for subgroups showed almost perfect agreement (τK = 0.894, DR: τK = 0.901, UR: τK = 0.889). The modifier had an intraRR of κC = 0.684 (DR: κC = 0.723, UR: κC = 0.651), which is also considered substantial.

Conclusion: The OF-Pelvis is a reliable tool to categorize OFP with substantial interRR and almost perfect intraRR. The similar reliabilities between experienced DRs and URs demonstrate that the training status of the user is not important. However, it may be a reliable basis for an indication of the treatment score.

Keywords: Classification; Consensus development; Fracture; Osteoporosis; Pelvic ring; Reliability; Sacral.

Conflict of interest statement

The authors declare that they have no conflict of interest or competing interests.

© 2021. The Author(s).

Figures

Fig. 1
Fig. 1
Localization of edema in OF1 and fracture localization in OF 2 – OF5. Continuous lines are variants of inevitable localizations for classification while broken lines are facultative localizations. Regarding edema detection needs MRI or Dual Energy CT OF 1 is presented in a different way than fracture lines in OF2-OF5
Fig. 2
Fig. 2
Three modifiers of the OF-Pelvis classifications system for osteoporotic sacral and pelvic ring fractures. Modifier can be assigned alone or in combination and shall indicate more severe injury a) Modifier 1 fracture of the L5 transverse process b-d) Displacement at any localization e) CT shows only a fracture of the sacral ala and f) the MRI reveals additional edema in the iliac bone without fracture evidence in the CT

References

    1. Lourie H. Spontaneous osteoporotic fracture of the sacrum: an unrecognized syndrome of the elderly. Jama. 1982;248(6):715–717. doi: 10.1001/jama.1982.03330060055034.
    1. Breuil V, Roux CH, Carle GF. Pelvic fractures: epidemiology, consequences, and medical management. Curr Opin Rheumatol. 2016;28(4):442–447. doi: 10.1097/BOR.0000000000000293.
    1. Rommens PM, Hofmann A. Comprehensive classification of fragility fractures of the pelvic ring: recommendations for surgical treatment. Injury. 2013;44(12):1733–1744. doi: 10.1016/j.injury.2013.06.023.
    1. Bakker G, Hattingen J, Stuetzer H, Isenberg J. Sacral insufficiency fractures: how to classify? J Korea Neurosurg Soc. 2018;61(2):258. doi: 10.3340/jkns.2017.0188.
    1. Vaccaro AR, Schroeder GD, Divi SN, Kepler CK, Kleweno CP, Krieg JC, et al. Description and reliability of the AOSpine sacral classification system. J Bone Joint Surg Am. 2020;102(16):1454. doi: 10.2106/JBJS.19.01153.
    1. Krappinger D, Kaser V, Merkel A, Neururer S, Lindtner RA. An alphanumeric classification of osteoporotic pelvic ring injuries. Arch Orthop Trauma Surg. 2020:1–9.
    1. Nuchtern JV, Hartel MJ, Henes FO, Groth M, Jauch SY, Haegele J, et al. Significance of clinical examination, CT and MRI scan in the diagnosis of posterior pelvic ring fractures. Injury. 2015;46(2):315–319. doi: 10.1016/j.injury.2014.10.050.
    1. Mendel T, Ullrich BW, Hofmann GO, Schenk P, Goehre F, Schwan S, et al. Progressive instability of bilateral sacral fragility fractures in osteoporotic bone: a retrospective analysis of X-ray, CT, and MRI datasets from 78 cases. Eur J Trauma Emerg Surg. 2020:1–9.
    1. Graul I, Marintschev I, Hackenbroch C, Palm H-G, Friemert B, Lang P. Modified therapy concepts for fragility fractures of the pelvis after additional MRI. PLoS One. 2020;15(10):e0238773. doi: 10.1371/journal.pone.0238773.
    1. Mendel T, Schenk P, Ullrich BW, Hofmann GO, Goehre F, Schwan S, et al. Mid-term outcome of bilateral fragility fractures of the sacrum after bisegmental transsacral stabilization versus spinopelvic fixation. The Bone & Joint Journal. 2021;103-B(3):462–468. doi: 10.1302/0301-620x.103b3.bjj-2020-1454.r1.
    1. Spiegl UJA, Schnake KJ, Osterhoff G, Scheyerer MJ, Ullrich B, Bula P, et al. Imaging of sacral stress and insufficiency fractures. Z Orthop Unfall. 2019;157(2):144–153. doi: 10.1055/a-0640-8933.
    1. Schnake KJ, Blattert TR, Hahn P, Franck A, Hartmann F, Ullrich B, et al. Classification of osteoporotic thoracolumbar spine fractures: recommendations of the spine section of the German Society for Orthopaedics and Trauma (DGOU) Global Spine J. 2018;8(2_suppl):46S–49S. doi: 10.1177/2192568217717972.
    1. Audige L, Bhandari M, Hanson B, Kellam J. A concept for the validation of fracture classifications. J Orthop Trauma. 2005;19(6):401–406.
    1. Mendel T, Noser H, Kuervers J, Goehre F, Hofmann G, Radetzki F. The influence of sacral morphology on the existence of secure S1 and S2 transverse bone corridors for iliosacroiliac screw fixation. Injury. 2013;44(12):1773–1779. doi: 10.1016/j.injury.2013.08.006.
    1. Kepler CK, Vaccaro AR, Koerner JD, Dvorak MF, Kandziora F, Rajasekaran S, et al. Reliability analysis of the AOSpine thoracolumbar spine injury classification system by a worldwide group of naïve spinal surgeons. Eur Spine J. 2016;25(4):1082–1086. doi: 10.1007/s00586-015-3765-9.
    1. Landis JR, Koch GG. The measurement of observer agreement for categorical data. biometrics. 1977:159–74. 10.2307/2529310.
    1. Rommens P, Arand C, Hopf J, Mehling I, Dietz S, Wagner D. Progress of instability in fragility fractures of the pelvis: an observational study. Injury. 2019;50(11):1966–1973. doi: 10.1016/j.injury.2019.08.038.
    1. Krappinger D, Kaser V, Kammerlander C, Neuerburg C, Merkel A, Lindtner RA. Inter-and intraobserver reliability and critical analysis of the FFP classification of osteoporotic pelvic ring injuries. Injury. 2019;50(2):337–343. doi: 10.1016/j.injury.2018.11.027.
    1. Rommens PM, Ossendorf C, Pairon P, Dietz S-O, Wagner D, Hofmann A. Clinical pathways for fragility fractures of the pelvic ring: personal experience and review of the literature. J Orthop Sci. 2015;20(1):1–11. doi: 10.1007/s00776-014-0653-9.
    1. Wagner D, Ossendorf C, Gruszka D, Hofmann A, Rommens P. Fragility fractures of the sacrum: how to identify and when to treat surgically? Eur J Trauma Emerg Surg. 2015;41(4):349–362. doi: 10.1007/s00068-015-0530-z.
    1. Rommens PM, Wagner D, Hofmann A. Minimal Invasive Surgical Treatment of Fragility Fractures of the Pelvis. Chirurgia (Bucharest, Romania: 1990) 2017;112(5):524–537. doi: 10.21614/chirurgia.112.5.524.
    1. Cabarrus MC, Ambekar A, Lu Y, Link TM. MRI and CT of insufficiency fractures of the pelvis and the proximal femur. Am J Roentgenol. 2008;191(4):995–1001. doi: 10.2214/AJR.07.3714.
    1. Lyders E, Whitlow C, Baker M, Morris P. Imaging and treatment of sacral insufficiency fractures. Am J Neuroradiol. 2010;31(2):201–210. doi: 10.3174/ajnr.A1666.
    1. Henes FO, Nuchtern JV, Groth M, Habermann CR, Regier M, Rueger JM, et al. Comparison of diagnostic accuracy of magnetic resonance imaging and multidetector computed tomography in the detection of pelvic fractures. Eur J Radiol. 2012;81(9):2337–2342. doi: 10.1016/j.ejrad.2011.07.012.
    1. Palm H-G, Lang P, Hackenbroch C, Sailer L, Friemert B. Dual-energy CT as an innovative method for diagnosing fragility fractures of the pelvic ring: a retrospective comparison with MRI as the gold standard. Arch Orthop Trauma Surg. 2020;140(4):473–80. doi: 10.1007/s00402-019-03283-8.
    1. Vleeming A, Schuenke M, Masi A, Carreiro J, Danneels L, Willard F. The sacroiliac joint: an overview of its anatomy, function and potential clinical implications. J Anat. 2012;221(6):537–567. doi: 10.1111/j.1469-7580.2012.01564.x.
    1. Pieroh P, Höch A, Hohmann T, Gras F, Märdian S, Pflug A, et al. Fragility fractures of the pelvis classification: a multicenter assessment of the intra-rater and inter-rater reliabilities and percentage of agreement. JBJS. 2019;101(11):987–994. doi: 10.2106/JBJS.18.00930.
    1. Reinhold M, Audige L, Schnake KJ, Bellabarba C, Dai LY, Oner FC. AO spine injury classification system: a revision proposal for the thoracic and lumbar spine. Eur Spine J. 2013;22(10):2184–2201. doi: 10.1007/s00586-013-2738-0.
    1. Vaccaro AR, Oner C, Kepler CK, Dvorak M, Schnake K, Bellabarba C, et al. AOSpine thoracolumbar spine injury classification system: fracture description, neurological status, and key modifiers. Spine. 2013;38(23):2028–2037. doi: 10.1097/BRS.0b013e3182a8a381.
    1. Majeed SA. Grading the outcome of pelvic fractures. J Bone Joint Surg British. 1989;71(2):304–306. doi: 10.1302/0301-620X.71B2.2925751.
    1. Meccariello L, Razzano C, De Dominicis C, Herrera-Molpeceres JA, Liuzza F, Erasmo R, et al. A new prognostic pelvic injury outcome score. Medicinski Glasnik. 2021;18(1).

Source: PubMed

3
Prenumerera