Smart Vest for Respiratory Rate Monitoring of COPD Patients Based on Non-Contact Capacitive Sensing

David Naranjo-Hernández, Alejandro Talaminos-Barroso, Javier Reina-Tosina, Laura M Roa, Gerardo Barbarov-Rostan, Pilar Cejudo-Ramos, Eduardo Márquez-Martín, Francisco Ortega-Ruiz, David Naranjo-Hernández, Alejandro Talaminos-Barroso, Javier Reina-Tosina, Laura M Roa, Gerardo Barbarov-Rostan, Pilar Cejudo-Ramos, Eduardo Márquez-Martín, Francisco Ortega-Ruiz

Abstract

In this paper, a first approach to the design of a portable device for non-contact monitoring of respiratory rate by capacitive sensing is presented. The sensing system is integrated into a smart vest for an untethered, low-cost and comfortable breathing monitoring of Chronic Obstructive Pulmonary Disease (COPD) patients during the rest period between respiratory rehabilitation exercises at home. To provide an extensible solution to the remote monitoring using this sensor and other devices, the design and preliminary development of an e-Health platform based on the Internet of Medical Things (IoMT) paradigm is also presented. In order to validate the proposed solution, two quasi-experimental studies have been developed, comparing the estimations with respect to the golden standard. In a first study with healthy subjects, the mean value of the respiratory rate error, the standard deviation of the error and the correlation coefficient were 0.01 breaths per minute (bpm), 0.97 bpm and 0.995 (p < 0.00001), respectively. In a second study with COPD patients, the values were &minus;0.14 bpm, 0.28 bpm and 0.9988 (p < 0.0000001), respectively. The results for the rest period show the technical and functional feasibility of the prototype and serve as a preliminary validation of the device for respiratory rate monitoring of patients with COPD.

Keywords: Chronic Obstructive Pulmonary Disease (COPD); Internet of Medical Things (IoMT); capacitive sensing; respiratory rate; respiratory rehabilitation.

Conflict of interest statement

The authors declare no conflict of interest. The founding sponsors had no role in the design of the study; in the collection, analyses or interpretation of data; in the writing of the manuscript; nor in the decision to publish the results.

Figures

Figure 1
Figure 1
Diagram of the proposed IoMT platform.
Figure 2
Figure 2
Smart vest: (a) design, (b) prototype implementation, (c) electrode system, (d) signal conditioning stage, (e) processing unit.
Figure 3
Figure 3
Generic operation scheme of the MQTT protocol.
Figure 4
Figure 4
Inspiration time in one of the experiments with healthy subjects.
Figure 5
Figure 5
Expiration time in one of the experiments with healthy subjects.
Figure 6
Figure 6
Respiratory rate in one of the experiments with healthy subjects.
Figure 7
Figure 7
Example of oscillation frequency fO variation in one of the experiments with healthy subjects.
Figure 8
Figure 8
Measurement correlation graph in the study with COPD patients.
Figure 9
Figure 9
Bland–Altman diagram of the capacitive device measurements with respect to the reference in the study with COPD patients.

References

    1. Mathers C., Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006;3:2011–2030. doi: 10.1371/journal.pmed.0030442.
    1. Global Initiative for Chronic Obstructive Lung Disease (GOLD) From the Global Strategy for the Diagnosis, Management and Prevention of COPD. [(accessed on 2 July 2018)];2017 Available online: .
    1. Man W.C., Kemp P., Moxham J., Polkey M. Skeletal muscle dysfunction in COPD: Clinical and laboratory observations. Clin. Sci. 2009;117:251–264. doi: 10.1042/CS20080659.
    1. ZuWallack R. The nonpharmacologic treatment of chronic obstructive pulmonary disease: Advances in our understanding of pulmonary rehabilitation. Proc. Am. Thorac. Soc. 2007;4:549–553. doi: 10.1513/pats.200701-015FM.
    1. Ries A., Bauldoff G., Carlin B., Casaburi R., Emery C., Mahler D., Make B., Rochester C., ZuWallack R., Herrerias C. Pulmonary rehabilitation: Joint ACCP/AACVPR Evidence-Based Clinical Practice Guidelines. Chest. 2007;131:4S–42S. doi: 10.1378/chest.06-2418.
    1. Johnston C., Maxwell L., Alison J. Establishing and delivering pulmonary rehabilitation in rural and remote settings: The opinions, attitudes and concerns of health care professionals. Aust. J. Rural Health. 2016;24:106–114. doi: 10.1111/ajr.12202.
    1. Mohammadi F., Jowkar Z., Khankeh H., Tafti S. Effect of home-based nursing pulmonary rehabilitation on patients with chronic obstructive pulmonary disease: A randomised clinical trial. Br. J. Community Nurs. 2013;18:398–403. doi: 10.12968/bjcn.2013.18.8.398.
    1. Ambrosino N., Makhabah D., Sutanto Y.S. Tele-medicine in respiratory diseases. Multidiscip. Respir. Med. 2017;12:1–5. doi: 10.1186/s40248-017-0090-7.
    1. Noury N., Perriot B., Noury N., Argod J., Pepin J.L. Monitoring physical activities of COPD patients with a network of sensors. IRBM. 2014;35:329–333. doi: 10.1016/j.irbm.2014.03.002.
    1. Cao Z., Zhu R., Que R.Y. A wireless portable system with microsensors for monitoring respiratory diseases. IEEE Trans. Biomed. Eng. 2012;59:3110–3116.
    1. Kundu S., Kumagai S., Sasaki M. A wearable capacitive sensor for monitoring human respiratory rate. Jpn. J. Appl. Phys. 2013;52 doi: 10.7567/JJAP.52.04CL05.
    1. Lapi S., Lavorini F., Borgioli G., Calzolai M., Masotti L., Pistolesi M., Fontana G.A. Respiratory rate assessments using a dual-accelerometer device. Respir. Physiol. Neurobiol. 2014;191:60–66. doi: 10.1016/j.resp.2013.11.003.
    1. Fieselmann J., Hendryx M., Helms C., Wakefield D. Respiratory rate predicts cardiopulmonary arrest for internal medicine inpatients. J. Gen. Intern. Med. 1993;8:354–360. doi: 10.1007/BF02600071.
    1. Steichen O., Grateau G., Bouvard E. Respiratory rate: The neglected vital sign. Med. J. Aust. 2008;189:531–532.
    1. Churpek M., Yuen T., Park S., Meltzer D., Hall J., Edelson D. Derivation of a cardiac arrest prediction model using ward vital signs. Crit. Care Med. 2012;40:2102–2108. doi: 10.1097/CCM.0b013e318250aa5a.
    1. Strauss R., Ewig S., Richter K., Konig T., Heller G., Bauer T. The prognostic significance of respiratory rate in patients with pneumonia: A retrospective analysis of data from 705,928 hospitalized patients in Germany from 2010–2012. Deutsches Arzteblatt Int. 2014;111:503–508. doi: 10.3238/arztebl.2014.0503.
    1. Augustynek M., Adamec O., Micanik D. Computer Information Systems and Industrial Management. Volume 7564 LNCS. Springer; Heidelberg, Germany: 2012. Using a Differential Pressure Sensor as Spirometer; pp. 236–241. Lecture Notes in Computer Science.
    1. Aliverti A. Wearable technology: Role in respiratory health and disease. Breathe. 2017;13:e27–e36. doi: 10.1183/20734735.008417.
    1. Estrada L., Torres A., Sarlabous L., Fiz J., Jané R. Respiratory rate detection by empirical mode decomposition method applied to diaphragm mechanomyographic signals; Proceedings of the 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; Chicago, IL, USA. 26–30 August 2014; pp. 3204–3207.
    1. Spire, Inc. Spire Stone Web Page. [(accessed on 2 July 2018)]; Available online: .
    1. MonDevices MonBaby Web Page. [(accessed on 2 July 2018)]; Available online: .
    1. Carré Technologies Hexoskin Smart Shirt Web Page. [(accessed on 2 July 2018)]; Available online: .
    1. Nizami S., Bekele A., Hozayen M., Greenwood K., Harrold J., Green J. Comparing time and frequency domain estimation of neonatal respiratory rate using pressure-sensitive mats; Proceedings of the 2017 IEEE International Symposium on Medical Measurements and Applications, MeMeA 2017; Rochester, MN, USA. 7–10 May 2017; pp. 239–244.
    1. Agcayazi T., Yokus M., Gordon M., Ghosh T., Bozkurt A. A stitched textile-based capacitive respiration sensor; Proceedings of the IEEE Sensors; Glasgow, UK. 29 October–1 November 2017; pp. 1–3.
    1. Nedoma J., Fajkus M., Martinek R., Vasinek V. Analysis of non-invasive FBG sensor for monitoring patient vital signs during MRI. Proc. SPIE Int. Soc. Opt. Eng. 2017;10440 doi: 10.1117/12.2277399.
    1. Gomez-Morad A., Cravero J., Harvey B., Bernier R., Halpin E., Walsh B., Nasr V. The evaluation of a noninvasive respiratory volume monitor in pediatric patients undergoing general anesthesia. Anesth. Analg. 2017;125:1913–1919. doi: 10.1213/ANE.0000000000002029.
    1. Medtronic Zephyr Web Page. [(accessed on 2 July 2018)]; Available online: .
    1. Vasireddy R., Roth C., Goette J., Jacomet M., Vogt A. K-band doppler radar is feasible and accurate to record and assess overnight respiratory rate. IFMBE Proc. 2017;65:334–337.
    1. Estrada L., Torres A., Sarlabous L., Jane R. Onset and Offset Estimation of the Neural Inspiratory Time in Surface Diaphragm Electromyography: A Pilot Study in Healthy Subjects. IEEE J. Biomed. Health Inform. 2018;22:67–76. doi: 10.1109/JBHI.2017.2672800.
    1. Sifuentes E., Cota-Ruiz J., González-Landaeta R. Respiratory rate detection by a time-based measurement system. Revista Mexicana de Ingenieria Biomedica. 2016;37:91–99.
    1. Heldt G., Ward Iii R. Evaluation of Ultrasound-Based Sensor to Monitor Respiratory and Nonrespiratory Movement and Timing in Infants. IEEE Trans. Biomed. Eng. 2016;63:619–629. doi: 10.1109/TBME.2015.2466633.
    1. Chreiteh S., Belhage B., Hoppe K., Branebjerg J., Haahr R., Duun S., Thomsen E. Estimation of respiratory rates based on photoplethysmographic measurements at the sternum; Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society; Milan, Italy. 25–29 August 2015; pp. 6570–6573.
    1. Yamagami H., Tanaka A., Kishino Y., Mikuni H., Kawahara T., Ohtav S., Yamamoto M., Suzuki S., Ohnishi T., Sagara H. Association between respiratory impedance measured by forced oscillation technique and exacerbations in patients with COPD. Int. J. COPD. 2018;13:79–89.
    1. Ghasemzadeh H., Ostadabbas S., Guenterberg E., Pantelopoulos A. Wireless medical-embedded systems: A review of signal-processing techniques for classification. IEEE Sens. J. 2013;13:423–437. doi: 10.1109/JSEN.2012.2222572.
    1. Bhatt C., Dey N., Ashour A. Internet of Things and Big Data Technologies for Next Generation Healthcare. Springer International Publishing; Berlin, Germany: 2017. p. 23.
    1. Yim H.J., Seo D., Jung H., Back M.K., Kim I., Lee K.C. Description and classification for facilitating interoperability of heterogeneous data/events/services in the Internet of Things. Neurocomputing. 2017;256:13–22. doi: 10.1016/j.neucom.2016.03.115.
    1. Gowda H., Kumar G., Imran M. Multi-modal biometric system on various levels of fusion using LPQ features. J. Inf. Optim. Sci. 2018;39:169–181.
    1. Farahani B., Firouzi F., Chang V., Badaroglu M., Constant N., Mankodiya K. Towards fog-driven IoT eHealth: Promises and challenges of IoT in medicine and healthcare. Future Gener. Comput. Syst. 2018;78:659–676. doi: 10.1016/j.future.2017.04.036.
    1. Rahmani A., Gia T., Negash B., Anzanpour A., Azimi I., Jiang M., Liljeberg P. Exploiting smart e-Health gateways at the edge of healthcare Internet-of-Things: A fog computing approach. Future Gener. Comput. Syst. 2018;78:641–658. doi: 10.1016/j.future.2017.02.014.
    1. Esposito E., Bruno A., Cattaneo G., Palmieri F. On the optimal tuning and placement of FEC codecs within multicasting trees for resilient publish/subscribe services in edge-IoT architectures. Future Gener. Comput. Syst. 2018;88:3204–3207. doi: 10.1016/j.future.2018.05.026.
    1. Hassanalieragh M., Page A., Soyata T., Sharma G., Aktas M., Mateos G., Kantarci B., Andreescu S. Health monitoring and management using Internet-of-Things (IoT) sensing with cloud-based processing: Opportunities and challenges; Proceedings of the IEEE International Conference on Services Computing (SCC); New York, NY, USA. 27 June–2 July 2015; pp. 285–292.
    1. Spano E., Di Pascoli S., Iannaccone G. Low-Power Wearable ECG Monitoring System for Multiple—Patient Remote Monitoring. IEEE Sens. J. 2016;16:5452–5462. doi: 10.1109/JSEN.2016.2564995.
    1. Azariadi D., Tsoutsouras V., Xydis S., Soudris D. ECG signal analysis and arrhythmia detection on IoT wearable medical devices; Proceedings of the 5th International Conference on Modern Circuits and Systems Technologies; Thessaloniki, Greece. 12–14 May 2016.
    1. Muppalla V., Suman D., Mukherjee B. Implementation of an Arrhythmia detection scheme with cellular based alert framework; Proceedings of the IEEE Calcutta Conference; Calcutta, India. 2–3 December 2017; pp. 438–442.
    1. Sardini E., Serpelloni M., Pasqui V. Wireless wearable T-shirt for posture monitoring during rehabilitation exercises. IEEE Trans. Instrum. Meas. 2015;64:439–448. doi: 10.1109/TIM.2014.2343411.
    1. Raji A., Devi P., Jeyaseeli P., Balaganesh N. Respiratory monitoring system for asthma patients based on IoT; Proceedings of the Online International Conference on Green Engineering and Technologies; Coimbatore, India. 19 November 2016; pp. 1–6.
    1. Dinh A., Luu L., Cao T. Blood Pressure Measurement Using Finger ECG and Photoplethysmogram for IoT; Proceedings of the International Conference on the Development of Biomedical Engineering in Vietnam; Ho Chi Minh, Vietnam. 27–29 June 2017; pp. 83–89.
    1. Bhat G., Bhat N. A novel IoT based framework for blood glucose examination; Proceedings of the International Conference on Electrical, Electronics, Communication, Computer, and Optimization Techniques; Mysuru, India. 15–16 December 2017; pp. 205–207.
    1. Baig M., GholamHosseini H., Moqeem A., Mirza F., Lindén M. A systematic review of wearable patient monitoring systems—Current challenges and opportunities for clinical adoption. J. Med. Syst. 2017;41:115. doi: 10.1007/s10916-017-0760-1.
    1. Divyaja P., Rani M. A Novel Implementation for Patient Monitoring in Rural Areas Using IoT Technology; Proceedings of the IADS International Conference on Computing, Communications and Data Engineering; Andhra Pradesh, India. 7–8 February 2018.
    1. Kumar R., Rajasekaran M. An IoT based patient monitoring system using raspberry Pi; Proceedings of the 2016 International Conference on Computing Technologies and Intelligent Data Engineering (ICCTIDE’16); Kovilpatti, India. 7–9 January 2016; pp. 1–4.
    1. Archip A., Botezatu N., Şerban E., Herghelegiu P., Zala A. An IoT based system for remote patient monitoring; Proceedings of the 17th International Carpathian Control Conference; Tatranska Lomnica, Slovakia. 29 May–1 June 2016; pp. 1–6.
    1. Wannenburg J., Malekian R. Body sensor network for mobile health monitoring, a diagnosis and anticipating system. IEEE Sens. J. 2015;15:6839–6852. doi: 10.1109/JSEN.2015.2464773.
    1. Sun J., Fang Y., Zhu X. Privacy and emergency response in e-healthcare leveraging wireless body sensor networks. IEEE Wirel. Commun. 2010;17:66–73. doi: 10.1109/MWC.2010.5416352.
    1. White N.M., Ash J., Wei Y., Akerman H. A Planar Respiration Sensor Based on a Capaciflector Structure. IEEE Sens. Lett. 2017;1:1–4. doi: 10.1109/LSENS.2017.2722481.
    1. Takano M., Yamagishi S., Ohmuta T., Fukuoka Y., Ueno A. Non-Contact Simultaneous Measurements of Electrocardiogram and Respiratory Movements Using Capacitive Sheet Electrodes. Adv. Biomed. Eng. 2017;6:28–36. doi: 10.14326/abe.6.28.
    1. Luis J., Roa Romero L., Gómez-Galán J., Naranjo D., Estudillo-Valderrama M., Barbarov-Rostán G., Rubia-Marcos C. Design and implementation of a smart sensor for respiratory rate monitoring. Sensors (Switzerland) 2014;14:3019–3032. doi: 10.3390/s140203019.
    1. Oum J., Koo H., Hong S. Non-contact Heartbeat Sensor using LC oscillator circuit; Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society; Vancouver, BC, Canada. 20–25 August 2008; pp. 4455–4458.
    1. Teichmann D., Foussier J., Jia J., Leonhardt S. Non-contacting monitoring of respiration and pulse based on capacitive coupling with thoracic tissue. Proc. World Congr. Eng. 2011;3:2695–2698.
    1. Talaminos A., Estudillo-Valderrama M., Roa L., Reina-Tosina J., Ortega-Ruiz F. A Machine-to-Machine protocol benchmark for eHealth applications—Use case: Respiratory rehabilitation. Comput. Methods Programs Biomed. 2016;129:1–11. doi: 10.1016/j.cmpb.2016.03.004.
    1. Singh M., Rajan M., Shivraj V., Balamuralidhar P. Secure MQTT for Internet of Things (IoT); Proceedings of the 5th International Conference on Communication Systems and Network Technologies; Gwalior, India. 4–6 April 2015; pp. 746–751.
    1. Heimgaertner F., Hettich S., Kohlbacher O., Menth M. Scaling home automation to public buildings: A distributed multiuser setup for OpenHAB 2; Proceedings of the GIoTS 2017—Global Internet of Things Summit; Geneva, Switzerland. 6–9 June 2017.
    1. Vitacca M., Holland A. Telehealth in Pulmonary Rehabilitation. Textbook of Pulmonary Rehabilitation. Springer; Cham, Switzerland: 2018. pp. 307–321.
    1. Sun G., Matsui T., Watai Y., Kim S., Kirimoto T., Suzuki S., Hakozaki Y. Vital-SCOPE: Design and Evaluation of a Smart Vital Sign Monitor for Simultaneous Measurement of Pulse Rate, Respiratory Rate, and Body Temperature for Patient Monitoring. J. Sens. 2018;2018 doi: 10.1155/2018/4371872.
    1. Bastianini F., Silvestri S., Magrone G., Gallotta E., Sterzi S. A preliminary efficacy evaluation performed by opto-electronic plethysmography of asymmetric respiratory rehabilitation; Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine; Minneapolis, MN, USA. 2–6 September 2009; pp. 849–852.
    1. Coutinho Myrrha M., Vieira D., Moraes K., Lage S., Parreira V., Britto R. Chest wall volumes during inspiratory loaded breathing in COPD patients. Respir. Physiol. Neurobiol. 2013;188:15–20. doi: 10.1016/j.resp.2013.04.017.
    1. Guirao Aguilar J. Master’s Thesis. University of Tromsø; Tromsø, Norway: 2010. Breathing as User Interface for Pulmonary Rehabilitation: Respiration Tracking Using the Wii Remote Controller; pp. 1–66.
    1. Granholm A., Pedersen N., Lippert A., Petersen L., Rasmussen L. Respiratory rates measured by a standardised clinical approach, ward staff, and a wireless device. Acta Anaesthesiologica Scandinavica. 2016;60:1444–1452. doi: 10.1111/aas.12784.
    1. Tomasic I., Tomasic N., Trobec R., Krpan M., Kelava T. Continuous remote monitoring of COPD patients-justification and explanation of the requirements and a survey of the available technologies. Med. Biol. Eng. Comput. 2018;56:547–569. doi: 10.1007/s11517-018-1798-z.
    1. Soniyapriyadarshini R. Case study on smart wearable sensors and systems with application in rehabilitation. Int. J. Sci. Eng. Res. 2013;4:5.
    1. Vyaire Medical MEDICAL Inc. Oxycon Mobile Device Web Page. [(accessed on 2 July 2018)]; Available online: .
    1. Naranjo-Hernández D., Roa L., Reina-Tosina J., Estudillo-Valderrama M., Barbarov G. Low-Power Plaform and Communications for the Development of Wireless Body Sensor Networks. Int. J. Distrib. Sens. Netw. 2015;11:1–13. doi: 10.1155/2015/431798.
    1. Microchip Technology Inc. PIC32MX440F256H Web Page. [(accessed on 2 July 2018)]; Available online: .
    1. Morais J., Costa M., Mejias E., Marinho D., Silva A., Barbosa T. Morphometric study for estimation and validation of trunk transverse surface area to assess human drag force on water. J. Hum. Kinet. 2011;28:5–13. doi: 10.2478/v10078-011-0017-x.
    1. Ciudin A., Salvador R., Budoy A., Ciudin A., Spinu C., Diaconu M., Constantin V., Sánchez J., Nicolau C., Alcaraz A. Measurement of waist circumference for retrospective studies—Prospective validation of use of CT images to assess abdominal circumference. Endocrinol. Nutr. 2014;61:147–152. doi: 10.1016/j.endonu.2013.10.004.
    1. Van Geenen E., Bollen T., Smits M., Van Santvoort H., Besselink M.G., Van Der Harst E., Gooszen H., Bruno M. The “obesity paradox” in predicted severe acute pancreatitis. Pancreatology. 2012;13:e82. doi: 10.1016/j.pan.2012.12.340.
    1. Min S., Yun Y., Shin H. Simplified structural textile respiration sensor based on capacitive pressure sensing method. IEEE Sens. J. 2014;14:3245–3251.
    1. Panagopoulos P., Gendelman O., Vakakis A. Robustness of nonlinear targeted energy transfer in coupled oscillators to changes of initial conditions. Nonlinear Dyn. 2007;47:377–387. doi: 10.1007/s11071-006-9037-9.
    1. De Feo O., Maggio G. Bifurcation phenomena in the Colpitts oscillator: A robustness analysis; Proceedings of the IEEE International Symposium on Circuits and Systems; Geneva, Switzerland. 28–31 May 2000; pp. II-469–II-472.
    1. Tantitharanukul N., Osathanunkul K., Hantrakul K., Pramokchon P., Khoenkaw P. MQTT-Topics Management System for sharing of Open Data; Proceedings of the 2nd Joint International Conference on Digital Arts, Media and Technology; Chiang Mai, Thailand. 1–4 March 2017; pp. 62–65.
    1. Fajkus M., Nedoma J., Martinek R., Walendziuk W. Comparison of the FBG sensor encapsulated into PDMS and FBG sensor glued on the plexiglass pad for respiratory and heart rate monitoring; Proceedings of the SPIE—The International Society for Optical Engineering; Wilga, Poland. 7 August 2017;
    1. Elliot C., Hamlin M., Lizamore C. Validity and reliability of the Hexoskin wearable biometric vest during maximal aerobic power testing in elite cyclists. J. Strength Cond. Res. 2018 doi: 10.1519/JSC.0000000000002005. in press.

Source: PubMed

3
Prenumerera