A customized home-based computerized cognitive rehabilitation platform for patients with chronic-stage stroke: study protocol for a randomized controlled trial

Macarena Gil-Pagés, Javier Solana, Rocío Sánchez-Carrión, Jose M Tormos, Antonia Enseñat-Cantallops, Alberto García-Molina, Macarena Gil-Pagés, Javier Solana, Rocío Sánchez-Carrión, Jose M Tormos, Antonia Enseñat-Cantallops, Alberto García-Molina

Abstract

Background: Stroke patients usually suffer primary cognitive impairment related to attention, memory, and executive functions. This impairment causes a negative impact on the quality of life of patients and their families, and may be long term. Cognitive rehabilitation has been shown to be an effective way to treat cognitive impairment and should be continued after hospital discharge. Computerized cognitive rehabilitation can be performed at home using exercise programs that advance with predetermined course content, interval, and pace. We hypothesize that computerized rehabilitation might be improved if a program could customize course content and pace in response to patient-specific progress. The present pilot study is a randomized controlled double-blind crossover clinical trial aiming to study if chronic stroke patients with cognitive impairment could benefit from cognitive training through a customized tele-rehabilitation platform ("Guttmann, NeuroPersonalTrainer"®, GNPT®).

Methods/design: Individuals with chronic-stage stroke will be recruited. Participants will be randomized to receive experimental intervention (customized tele-rehabilitation platform, GNPT®) or sham intervention (ictus.online), both with the same frequency and duration (five sessions per week over 6 weeks). After a washout period of 3 months, crossover will occur and participants from the GNPT® condition will receive sham intervention, while participants originally from the sham intervention will receive GNPT®. Patients will be assessed before and after receiving each treatment regimen with an exhaustive neuropsychological battery. Primary outcomes will include rating measures that assess attention difficulties, memory failures, and executive dysfunction for daily activities, as well as performance-based measures of attention, memory, and executive functions.

Discussion: Customized cognitive training could lead to better cognitive function in patients with chronic-stage stroke and improve their quality of life.

Trial registration: NCT03326349 . Registered 31 October 2017.

Keywords: Chronic; Cognitive impairment; Computerized cognitive rehabilitation; Randomized controlled trial; Stroke.

Conflict of interest statement

Ethics approval and consent to participate

Ethics approval has been received from Care Ethics Committee of Fundació Institut Guttmann. Informed consent from all participants in the study will be obtained.

Consent for publication

Not applicable.

Competing interests

The GNPT® is partly property of Institut Guttmann. JS, AGM, RSC, and JMT have been involved in the development of the GNPT®.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Study flow diagram
Fig. 2
Fig. 2
SPIRIT figure: schedule of enrolment, interventions and assessments
Fig. 3
Fig. 3
Experimental intervention (GNPT®) screenshots. a To access to the platform, the user must enter their username and password. b Each exercise begins with an instruction screen. c Example of a cognitive rehabilitation exercise. d At the end of each exercise, a results screen is displayed
Fig. 4
Fig. 4
Sham intervention (ictus.online) screenshots. a To access to the platform, the user must enter their username and password. b Each exercise begins with an instruction screen. c The user watches a 10-min video. d When finished, the user accesses a three-question quiz with four response options. e When the quiz is finished, a results screen is displayed. In each session, three videos with their corresponding quiz are presented

References

    1. Donaghy M. Brain’s Diseases of the Nervous System. 12. New York: Oxford University Press; 2009.
    1. Lezak MD, Howieson DB, Bigler ED, Tranel D. Neuropsychological Assessment. 5. New York: Oxford University Press; 2012.
    1. Sacco R, Kasner S, Broderick J, Caplan L, Connors J, Culebras A, Elkind M, George M, Hamdan A, Higashida R, Hoh B, Janis L, Kase C, Kleindorfer D, Lee J, Moseley M, Peterson E, Turan T, Valderrama A, Vinters H. An updated definition of stroke for the 21st century: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2013;44:2064–2089. doi: 10.1161/STR.0b013e318296aeca.
    1. Krishnamurthi R, Moran AE, Feigin VL, Barker-Collo S, Norrving B, Mensah GA, Taylor S, Naghavi M, Forouzanfar MH, Nguyen G, Johnson CO, Vos T, Murray CJ, Roth GA. Stroke prevalence, mortality and disability-adjusted life years in adults aged 20-64 years in 1990-2013: Data from the Global Burden of Disease 2013 Study. Neuroepidemiology. 2015;45(3):190–202. doi: 10.1159/000441098.
    1. World Health Organization . Regional Office for the Eastern Mediterranean. 2017.
    1. Brea A, Laclaustra M, Martorell E, Pedragosa À. Epidemiology of cerebrovascular disease in Spain. Clínica e Investigación en Arteriosclerosis. 2013;25(Suppl 5):211–217. doi: 10.1016/j.arteri.2013.10.006.
    1. Teasell R, Hussein N, Viana R, Madady M, Donaldson S, McClure A, Richardson M. Clinical Consequences of Stroke. Stroke Rehabilitation Clinician Handbook. 2016.
    1. Ma VY, Chan L, Carruthers KJ. Incidence, prevalence, costs and impact on disability of common conditions requiring rehabilitation in the United States: stroke, spinal cord injury, traumatic brain injury, multiple sclerosis, osteoarthritis, rheumatoid arthritis, limb loss and back pain. Arch Phys Med Rehabil. 2014;95:986–995. doi: 10.1016/j.apmr.2013.10.032.
    1. Prokopenko S, Mozheyko E, Petrova M, Koryagina T, Kaskaeva D, Chernykh T, Shvetzova I, Bezdenezhnih A. Correction of post-stroke cognitive impairments using computer programs. J Neurol Sci. 2013;325:148–153. doi: 10.1016/j.jns.2012.12.024.
    1. van de Ven R, Schmand B, Groet E, Veltman D, Murre J. The effect of computer-based cognitive flexibility training on recovery of executive function after stroke: rationale, design and methods of the TAPASS study. BMC Neurol. 2015;15:144. doi: 10.1186/s12883-015-0397-y.
    1. Bogdanova Y, Yee M, Ho V, Cicerone K. Computerized cognitive rehabilitation of attention and executive function in acquired brain injury. J Head Trauma Rehabil. 2016;31:419–433. doi: 10.1097/HTR.0000000000000203.
    1. Poulin V, Korner-Bitensky N, Dawson D, Bherer L. Efficacy of executive function interventions after stroke: a systematic review. Top Stroke Rehabil. 2012;19:158–171. doi: 10.1310/tsr1902-158.
    1. Solana J, Cáceres C, García-Molina A, Chausa P, Opisso E, Roig-Rovira T, Ernestina M, Tormos-Muñoz JM, Gómez EJ. Intelligent Therapy Assistant (ITA) for cognitive rehabilitation in patients with acquired brain injury. BMC Med Inform Decis Mak. 2014;14:58. doi: 10.1186/1472-6947-14-58.
    1. Solana J, Cáceres C, García-Molina A, Opisso E, Roig T, Tormos JM, Gómez EJ. Improving brain injury cognitive rehabilitation by personalized telerehabilitation services: Guttmann Neuropersonal Trainer. IEEE J Biomed Health Inf. 2015;19(1):124–131. doi: 10.1109/JBHI.2014.2354537.
    1. Zelinski E. Far transfer in cognitive training of older adults. Restor Neurol Neurosci. 2009;27(Suppl 5):455–471.
    1. Toglia JP. Generalization of treatment: a multicontext approach to cognitive perceptual impairment in adults with brain injury. Am J Occup Ther. 1991;45(6):506–516. doi: 10.5014/ajot.45.6.505.
    1. Barnett SM, Cecci SJ. When and where do we apply what we learn? A taxonomy for transfer. Psychol Bull. 2002;128(4):612–637. doi: 10.1037/0033-2909.128.4.612.
    1. Van de Ven RM, Murre MJ, Veltman DJ, Schmand BA. Computer-based cognitive training for executive functions after stroke: a systematic review. Front Hum Neurosci. 2016;10:150. doi: 10.3389/fnhum.2016.00150.
    1. Cicerone K, Langenbahn D, Braden C, Malec J, Kalmar K, Fraas M, Felicetti T, Laatsch L, Harley J, Bergquist T, Azulay J, Cantor J, Ashman T. Evidence-based cognitive rehabilitation: updated review of the literature from 2003 through 2008. Arch Phys Med Rehabil. 2011;92:519–530. doi: 10.1016/j.apmr.2010.11.015.
    1. Microsoft Support: Description of the RAND Function in Excel. 2017. . Accessed 5 Feb 2018.
    1. Whitehead A, Julious S, Cooper C, Campbell M. Estimating the sample size for a pilot randomised trial to minimise the overall trial sample size for the external pilot and main trial for a continuous outcome variable. Stat Methods Med Res. 2015;25:1057–1073. doi: 10.1177/0962280215588241.
    1. De Luca R, Calabrò R, Gervasi G, De Salvo S, Bonanno L, Corallo F, De Cola M, Bramanti P. Is computer-assisted training effective in improving rehabilitative outcomes after brain injury? A case-control hospital-based study. Disabil Health J. 2014;7:356–360. doi: 10.1016/j.dhjo.2014.04.003.
    1. Westerberg H, Jacobaeus H, Hirvikoski T, Clevberger P, Östensson M, Bartfai A, Klingberg T. Computerized working memory training after stroke – A pilot study. Brain Inj. 2007;21:21–29. doi: 10.1080/02699050601148726.
    1. Björkdahl A, Åkerlund E, Svensson S, Esbjörnsson E. A randomized study of computerized working memory training and effects on functioning in everyday life for patients with brain injury. Brain Inj. 2013;27:1658–1665. doi: 10.3109/02699052.2013.830196.
    1. Peña-Casanova J. Normalidad, Semiología y Patología Neuropsicológicas. Programa Integrado de Exploración Neuropsicológica. Test Barcelona Revisado. 2. Barcelona: Masson; 2005.
    1. World Medical Association Declaration of Helsinki Ethical principles for medical research involving human subjects. JAMA. 2013;310(20):2191–2194. doi: 10.1001/jama.2013.281053.
    1. Chan A-W, Tetzlaff JM, Altman DG, Laupacis A, Gøtzsche PC, Krleža-Jerić K, Hróbjartsson A, Mann H, Dickersin K, Berlin J, Doré C, Parulekar W, Summerskill W, Groves T, Schulz K, Sox H, Rockhold FW, Rennie D, Moher D. SPIRIT 2013 statement: defining standard protocol items for clinical trials. Ann Intern Med. 2013;158:200–207. doi: 10.7326/0003-4819-158-3-201302050-00583.
    1. Conners CK. Conners’ Continuous Performance Test II: Computer Program for Windows Technical Guide and Software Manual. North Tonwanda: Mutli-Health Systems; 2000.
    1. Tombaugh T. Trail Making Test A and B: Normative data stratified by age and education. Arch Clin Neuropsychol. 2004;19(2):203–214. doi: 10.1016/S0887-6177(03)00039-8.
    1. Wechsler D. WAIS-III. Administration and Scoring Manual. San Antonio: The Psychological Association; 1997.
    1. Schmid M. Rey Auditory and Verbal Learning Test: A Handbook. Los Angeles: Western Psychological Services; 1996.
    1. Golden CJ. Test of Colors and Words. Madrid: Tea Editions; 2001.
    1. Roig-Fusté JM. Prueba de clasificación de cartas. Barcelona: MTR; 2001.
    1. Artiola i Fortuny L, Hermosillo Romo D, Heaton RK, Pardee RE., III . Manual de Normas y Procedimientos para la Batería Neuropsicológica en Español. Tucson: mPress; 1999.
    1. Ponsford J, Kinsella G. The use of a rating scale of attentional behavior. Neuropsychol Rehabil. 1991;1(4):241–257. doi: 10.1080/09602019108402257.
    1. Crawford JR, Smith G, Maylor EA, Della Sala S, Logie RH. The Prospective and Retrospective Memory Questionnaire (PRMQ): normative data and latent structure in a large non-clinical sample. Memory. 2003;11(3):261–275. doi: 10.1080/09658210244000027.
    1. Roth RM, Isquith PK, Goia GA. BRIEF-A: Behavior Rating Inventory of Executive Function – Adult version. Lutz: Psychological Assessment Resources, Inc.; 2005.
    1. Zigmond AS, Snaith RP. The Hospital Anxiety and Depression Scale. Acta Psychiatr Scand. 1983;67:361–370. doi: 10.1111/j.1600-0447.1983.tb09716.x.
    1. Prigatano GP, Fordyce DJ, Zeiner HK, Roueche JR, Pepping M, Wood BC. Neuropsychological Rehabilitation after Brain Injury. Baltimore: Johns Hopkins University Press; 1986.
    1. Willer B, Rosenthal M, Kreutzer JS, Gordon WA, Rempel R. Assessment of community integration following rehabilitation for traumatic brain injury. J Head Trauma Rehabil. 1993;8(2):75–87. doi: 10.1097/00001199-199308020-00009.
    1. Fischer S, Trexler LE, Gauggel S. Awareness of activity limitations and prediction of performance in patients with brain injuries and orthopedic disorders. J Int Neuropsychol Soc. 2004;10(2):190–199. doi: 10.1017/S1355617704102051.
    1. Gauggel S, Peleska B, Bode RK. Relationship between cognitive impairments and rated activity restrictions in stroke patients. J Head Trauma Rehabil. 2000;15(1):710–723. doi: 10.1097/00001199-200002000-00009.
    1. Lee H, Lee Y, Choi H, Pyun SB. Community integration and quality of life in aphasia after stroke. Yonsei Med J. 2015;56:1694–1702. doi: 10.3349/ymj.2015.56.6.1694.
    1. Habeck C, Razlighi Q, Gazes Y, Barulli D, Steffener J, Stern Y. Cognitive reserve and brain maintenance: orthogonal concepts in theory and practice. Cereb Cortex. 2017;27:3962–3969.
    1. Steward K, Kennedy R, Novack T, Crowe M, Marson D, Triebel K. The role of cognitive reserve in recovery from traumatic brain injury. J Head Trauma Rehabil. 2018;33(1):E18–E27.
    1. R Core Team . R: A Language and Environment for Statistical. Vienna: Computing. R Foundation for Statistical Computing; 2017.

Source: PubMed

3
Prenumerera