MOnitored supplementation of VItamin D in preterm infants (MOSVID trial): study protocol for a randomised controlled trial

Alicja Kołodziejczyk, Maria K Borszewska-Kornacka, Joanna Seliga-Siwecka, Alicja Kołodziejczyk, Maria K Borszewska-Kornacka, Joanna Seliga-Siwecka

Abstract

Background: The pivotal role of vitamin D (vit D) in skeletal health is well known. Neonatal vit D storage at birth is dependent on maternal levels, and newborns receive 50-70% of their mother's 25-hydroxyvitamin D [25(OH)D]. Deficiency of vit D can lead to prematurity bone disease, with an incidence of up to 55% in infants weighing < 1000 g. The aim of this study is to assess the effectiveness of monitored supplementation of vit D in a population of preterm infants.

Methods/design: Preterm infants born at 24-32 weeks of gestation will be recruited within the first 7 days of life. Depending on the type of feeding, and after reaching partial enteral feeding or at 7 days of life, vit D supplementation will consist of 500 IU and an additional 150-300 IU/kg included in human milk fortifiers (if fed exclusively with breast milk) or 190 IU/kg in milk formulas. Subjects will be randomised to either monitored (with an option of dose modification based on 25(OH)D levels as per protocol) or standard therapy up to 52 weeks of post-conceptional age (PCA). The primary outcome measure will be the number of neonates with deficiency or excess levels of 25(OH)D at 40 ±2 weeks of PCA. Additional 25(OH)D levels will be measured at birth, at 4 and 8 weeks of age, and/or at 35 and 52 ±2 weeks of PCA. Secondary objectives will include the incidence of osteopenia, nephrocalcinosis and nephrolithiasis. Serum parameters of calcium phosphorus metabolism will also be measured.

Discussion: Despite multiple years of research and numerous publications, there is still a lack of consensus in regard to how much vit D infants should receive and how long they should receive it. Because 80% of calcium and phosphorus placental transfer occurs between 24 and 40 weeks of gestation, preterm infants are especially prone to adverse effects of vit D insufficiency. However, both inadequate and excessive amounts of vit D may be unsafe and lead to serious health issues. The results of our study may shed new light on these concerns and contribute to optimising vit D supplementation.

Trial registration: ClinicalTrials.gov, NCT03087149 . Registered on 15 March 2017.

Keywords: Osteopenia; Prematurity; Vitamin D.

Conflict of interest statement

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Treatment allocations *500 IU for infants weighing DOL Days of life, PCA Postconceptional age
Fig. 2
Fig. 2
Schedule of enrolment, interventions and assessments. 25(OH)D 25-Hydroxyvitamin D, PCA Post-conceptional age

References

    1. Holick MF. Vitamin D, deficiency. N Engl J Med. 2007;357:266–81. doi: 10.1056/NEJMra070553.
    1. Markestad T, Aksnes L, Ulstein M, Aarskog D. 25-Hydroxyvitamin D and 1,25-dihydroxyvitamin D of D2 and D3 origin in maternal and umbilical cord serum after vitamin D2 supplementation in human pregnancy. Am J Clin Nutr. 1984;40:1057–63.
    1. Taylor SN, Wagner CL, Hollis BW. Vitamin D supplementation during lactation to support infant and mother. J Am Coll Nutr. 2008;27:690–701. doi: 10.1080/07315724.2008.10719746.
    1. Hollis BW, Wagner CL. Vitamin D requirements during lactation: high-dose maternal supplementation as therapy to prevent hypovitaminosis D for both the mother and the nursing infant. Am J Clin Nutr. 2004;80(6 Suppl):1752S–8S.
    1. Backstrom MC, Kuusela AL, Maki R. Metabolic bone disease of prematurity. Ann Med. 1996;28:275–82. doi: 10.3109/07853899608999080.
    1. Dinlen N, Zenciroglu A, Beken S, Dursun A, Dilli D, Okumus N. Association of vitamin D deficiency with acute lower respiratory tract infections in newborns. J Matern Fetal Neonatal Med. 2016;29:928–32. doi: 10.3109/14767058.2015.1023710.
    1. Grant CC, Kaur S, Waymouth E, Mitchell EA, Scragg R, Ekeroma A, Stewart A, Crane J, Trenholme A, Camargo CA., Jr Reduced primary care respiratory infection visits following pregnancy and infancy vitamin D supplementation: a randomised controlled trial. Acta Paediatr. 2015;104:396–404. doi: 10.1111/apa.12819.
    1. Leis KS, McNally JD, Montgomery MR, Sankaran K, Karunanayake C, Rosenberg AM. Vitamin D intake in young children with acute lower respiratory infection [in Chinese] Zhongguo Dang Dai Er Ke Za Zhi. 2012;14:1–6.
    1. Maxwell CS, Carbone ET, Wood RJ. Better newborn vitamin D status lowers RSV-associated bronchiolitis in infants. Nutr Rev. 2012;70:548–52. doi: 10.1111/j.1753-4887.2012.00517.x.
    1. Mimouni FB, Mandel D, Lubetzky R, Senterre T. Calcium, phosphorus, magnesium and vitamin D requirements of the preterm infant. World Rev Nutr Diet. 2014;110:140–51. doi: 10.1159/000358463.
    1. Abrams SA, Committee on Nutrition Calcium and vitamin D requirements of enterally fed preterm infants. Pediatrics. 2013;131:e1676–83. doi: 10.1542/peds.2013-0420.
    1. Agostoni C, Buonocore G, Carnielli VP, De Curtis M, Darmaun D, Decsi T, Domellof M, Embleton ND, Fusch C, Genzel-Boroviczeny O, et al. Enteral nutrient supply for preterm infants: commentary from the European Society of Paediatric Gastroenterology, Hepatology and Nutrition Committee on Nutrition. J Pediatr Gastroenterol Nutr. 2010;50:85–91. doi: 10.1097/MPG.0b013e3181adaee0.
    1. Pludowski P, Karczmarewicz E, Bayer M, Carter G, Chlebna-Sokol D, Czech-Kowalska J, Debski R, Decsi T, Dobrzanska A, Franek E, et al. Practical guidelines for the supplementation of vitamin D and the treatment of deficits in Central Europe — recommended vitamin D intakes in the general population and groups at risk of vitamin D deficiency. Endokrynol Pol. 2013;64:319–27. doi: 10.5603/EP.2013.0012.
    1. Monangi N, Slaughter JL, Dawodu A, Smith C, Akinbi HT. Vitamin D status of early preterm infants and the effects of vitamin D intake during hospital stay. Arch Dis Child Fetal Neonatal Ed. 2014;99:F166–8. doi: 10.1136/archdischild-2013-303999.
    1. Pinto K, Collins CT, Gibson RA, Andersen CC. Vitamin D in preterm infants: a prospective observational study. J Paediatr Child Health. 2015;51:679–81. doi: 10.1111/jpc.12847.
    1. Natarajan CK, Sankar MJ, Agarwal R, Pratap OT, Jain V, Gupta N, Gupta AK, Deorari AK, Paul VK, Sreenivas V. Trial of daily vitamin D supplementation in preterm infants. Pediatrics. 2014;133:e628–34. doi: 10.1542/peds.2012-3395.
    1. Fort P, Salas AA, Ambalavanan N. Randomized clinical trial of vitamin D supplementation in extremely preterm infants [abstract 324] J Investig Med. 2015;63:417.
    1. Vogiatzi MG, Jacobson-Dickman E, DeBoer MD, Drugs, and Therapeutics Committee of the Pediatric Endocrine Society Vitamin D supplementation and risk of toxicity in pediatrics: a review of current literature. J Clin Endocrinol Metab. 2014;99:1132–41. doi: 10.1210/jc.2013-3655.
    1. Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, Murad MH, Weaver CM, Endocrine Society Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2011;96:1911–30. doi: 10.1210/jc.2011-0385.
    1. Ross AC, Manson JE, Abrams SA, Aloia JF, Brannon PM, Clinton SK, Durazo-Arvizu RA, Gallagher JC, Gallo RL, Jones G, et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. J Clin Endocrinol Metab. 2011;96:53–8. doi: 10.1210/jc.2010-2704.
    1. Nemet D, Dolfin T, Wolach B, Eliakim A. Quantitative ultrasound measurements of bone speed of sound in premature infants. Eur J Pediatr. 2001;160:736–40. doi: 10.1007/s004310100849.
    1. Rack B, Lochmuller EM, Janni W, Lipowsky G, Engelsberger I, Friese K, Kuster H. Ultrasound for the assessment of bone quality in preterm and term infants. J Perinatol. 2012;32:218–26. doi: 10.1038/jp.2011.82.
    1. Mercy J, Dillon B, Morris J, Emmerson AJ, Mughal MZ. Relationship of tibial speed of sound and lower limb length to nutrient intake in preterm infants. Arch Dis Child Fetal Neonatal Ed. 2007;92:F381–5. doi: 10.1136/adc.2006.105742.
    1. Viswanathan S, Khasawneh W, McNelis K, Dykstra C, Amstadt R, Super DM, Groh-Wargo S, Kumar D. Metabolic bone disease: a continued challenge in extremely low birth weight infants. JPEN J Parenter Enteral Nutr. 2014;38:982–90. doi: 10.1177/0148607113499590.
    1. Aladangady N, Coen PG, White MP, Rae MD, Beattie TJ. Urinary excretion of calcium and phosphate in preterm infants. Pediatr Nephrol. 2004;19:1225–31. doi: 10.1007/s00467-004-1574-1.
    1. Bastug F, Gunduz Z, Tulpar S, Poyrazoglu H, Dusunsel R. Urolithiasis in infants: evaluation of risk factors. World J Urol. 2013;31:1117–22. doi: 10.1007/s00345-012-0828-y.
    1. Copelovitch L. Urolithiasis in children: medical approach. Pediatr Clin North Am. 2012;59:881–96. doi: 10.1016/j.pcl.2012.05.009.
    1. Rustico SE, Calabria AC, Garber SJ. Metabolic bone disease of prematurity. J Clin Transl Endocrinol. 2014;1:85–91. doi: 10.1016/j.jcte.2014.06.004.
    1. Schell-Feith EA, Holscher HC, Zonderland HM, Kist-Van Holthe JE, Conneman N, van Zwieten PH, Brand R, van der Heijden AJ. Ultrasonographic features of nephrocalcinosis in preterm neonates. Br J Radiol. 2000;73:1185–91. doi: 10.1259/bjr.73.875.11144796.
    1. Schell-Feith EA, Kist-van Holthe JE, van der Heijden AJ. Nephrocalcinosis in preterm neonates. Pediatr Nephrol. 2010;25:221–30. doi: 10.1007/s00467-008-0908-9.
    1. Pilz S, Hahn A, Schön C, Wilhelm M, Obeid R. Effect of two different multimicronutrient supplements on vitamin D status in women of childbearing age: a randomized trial. Nutrients. 2017;9:30. doi: 10.3390/nu9010030.
    1. Chan AW, Tetzlaff JM, Altman DG, Dickersin K, Moher D. SPIRIT 2013: new guidance for content of clinical trial protocols. Lancet. 2013;381:91–2. doi: 10.1016/S0140-6736(12)62160-6.

Source: PubMed

3
Prenumerera