Study in Parkinson's disease of exercise phase 3 (SPARX3): study protocol for a randomized controlled trial

Charity G Patterson, Elizabeth Joslin, Alexandra B Gil, Wendy Spigle, Todd Nemet, Lana Chahine, Cory L Christiansen, Ed Melanson, Wendy M Kohrt, Martina Mancini, Deborah Josbeno, Katherine Balfany, Garett Griffith, Mac Kenzie Dunlap, Guillaume Lamotte, Erin Suttman, Danielle Larson, Chantale Branson, Kathleen E McKee, Li Goelz, Cynthia Poon, Barbara Tilley, Un Jung Kang, Malú Gámez Tansey, Nijee Luthra, Caroline M Tanner, Jacob M Haus, Giamila Fantuzzi, Nikolaus R McFarland, Paulina Gonzalez-Latapi, Tatiana Foroud, Robert Motl, Michael A Schwarzschild, Tanya Simuni, Kenneth Marek, Anna Naito, Codrin Lungu, Daniel M Corcos, SPARX3-PSG Investigators, Terry D Ellis, Ludy C Shih, Timothy J Nordahl, Michael T Stevenson, Jay L Alberts, Ashwini K Rao, Corey Landis, Joe R Nocera, Madeleine E Hackney, Elizabeth L Stegemoller, Angela L Ridgel, Jan M Hondzinski, Neil M Johannsen, Patrick Drummond, Heather Milton, David A Hinkle, Fay B Horak, Mitra Afshari, Christopher P Hurt, Ariel Kidwell, Corinna Conroy, Neil Panchal, Brooke Schultz, Jes Marchbank, Aaron Bloemer, Demetra D Christou, David E Vaillancourt, Stephanie Lapierre, Colum D MacKinnon, Sommer Amundsen-Huffmaster, Kristin Garland, Blake B Rasmussen, Summer Chapman, Jessica Spahn, Laura Wu, Lee E Dibble, Genevieve N Olivier, Art Weltman, William Alex Dalrymple, David Edwards, Corey Rynders, Lauren Miller, Gammon M Earhart, Kerri S Rawson, Kelvin Jones, Krista Nelles, Quincy J Almeida, Marie Saint-Hilaire, Stewart A Factor, Camilla Kilbane, Brian J Copeland, Marian L Dale, Alberto J Espay, Adolfo Ramirez-Zamora, Amanda Fessenden, Andres F Deik, Richard Camicioli, Charity G Patterson, Elizabeth Joslin, Alexandra B Gil, Wendy Spigle, Todd Nemet, Lana Chahine, Cory L Christiansen, Ed Melanson, Wendy M Kohrt, Martina Mancini, Deborah Josbeno, Katherine Balfany, Garett Griffith, Mac Kenzie Dunlap, Guillaume Lamotte, Erin Suttman, Danielle Larson, Chantale Branson, Kathleen E McKee, Li Goelz, Cynthia Poon, Barbara Tilley, Un Jung Kang, Malú Gámez Tansey, Nijee Luthra, Caroline M Tanner, Jacob M Haus, Giamila Fantuzzi, Nikolaus R McFarland, Paulina Gonzalez-Latapi, Tatiana Foroud, Robert Motl, Michael A Schwarzschild, Tanya Simuni, Kenneth Marek, Anna Naito, Codrin Lungu, Daniel M Corcos, SPARX3-PSG Investigators, Terry D Ellis, Ludy C Shih, Timothy J Nordahl, Michael T Stevenson, Jay L Alberts, Ashwini K Rao, Corey Landis, Joe R Nocera, Madeleine E Hackney, Elizabeth L Stegemoller, Angela L Ridgel, Jan M Hondzinski, Neil M Johannsen, Patrick Drummond, Heather Milton, David A Hinkle, Fay B Horak, Mitra Afshari, Christopher P Hurt, Ariel Kidwell, Corinna Conroy, Neil Panchal, Brooke Schultz, Jes Marchbank, Aaron Bloemer, Demetra D Christou, David E Vaillancourt, Stephanie Lapierre, Colum D MacKinnon, Sommer Amundsen-Huffmaster, Kristin Garland, Blake B Rasmussen, Summer Chapman, Jessica Spahn, Laura Wu, Lee E Dibble, Genevieve N Olivier, Art Weltman, William Alex Dalrymple, David Edwards, Corey Rynders, Lauren Miller, Gammon M Earhart, Kerri S Rawson, Kelvin Jones, Krista Nelles, Quincy J Almeida, Marie Saint-Hilaire, Stewart A Factor, Camilla Kilbane, Brian J Copeland, Marian L Dale, Alberto J Espay, Adolfo Ramirez-Zamora, Amanda Fessenden, Andres F Deik, Richard Camicioli

Abstract

Background: To date, no medication has slowed the progression of Parkinson's disease (PD). Preclinical, epidemiological, and experimental data on humans all support many benefits of endurance exercise among persons with PD. The key question is whether there is a definitive additional benefit of exercising at high intensity, in terms of slowing disease progression, beyond the well-documented benefit of endurance training on a treadmill for fitness, gait, and functional mobility. This study will determine the efficacy of high-intensity endurance exercise as first-line therapy for persons diagnosed with PD within 3 years, and untreated with symptomatic therapy at baseline.

Methods: This is a multicenter, randomized, evaluator-blinded study of endurance exercise training. The exercise intervention will be delivered by treadmill at 2 doses over 18 months: moderate intensity (4 days/week for 30 min per session at 60-65% maximum heart rate) and high intensity (4 days/week for 30 min per session at 80-85% maximum heart rate). We will randomize 370 participants and follow them at multiple time points for 24 months. The primary outcome is the Movement Disorders Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) motor score (Part III) with the primary analysis assessing the change in MDS-UPDRS motor score (Part III) over 12 months, or until initiation of symptomatic antiparkinsonian treatment if before 12 months. Secondary outcomes are striatal dopamine transporter binding, 6-min walk distance, number of daily steps, cognitive function, physical fitness, quality of life, time to initiate dopaminergic medication, circulating levels of C-reactive protein (CRP), and brain-derived neurotrophic factor (BDNF). Tertiary outcomes are walking stride length and turning velocity.

Discussion: SPARX3 is a Phase 3 clinical trial designed to determine the efficacy of high-intensity, endurance treadmill exercise to slow the progression of PD as measured by the MDS-UPDRS motor score. Establishing whether high-intensity endurance treadmill exercise can slow the progression of PD would mark a significant breakthrough in treating PD. It would have a meaningful impact on the quality of life of people with PD, their caregivers and public health.

Trial registration: ClinicalTrials.gov NCT04284436 . Registered on February 25, 2020.

Keywords: Blood biomarkers; DaTscan™ SPECT; Endurance exercise; Exercise dose response; Gait assessment; Parkinson disease; Quality of life; Time to initiate dopaminergic medication; Treadmill exercise.

Conflict of interest statement

Oregon Health Sciences University (OHSU) and Dr. Horak have a significant financial interest in APDM Precision Motion, a division of Clario, International that may have a commercial interest in the results of this research and technology. This potential conflict has been reviewed and managed by OHSU. The other authors declare that they have no competing interests.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Design of the Study in Parkinson Disease of Exercise (SPARX3) Trial. The moderate-intensity exercise group is assigned to exercise 4 days a week at 60–65% HRmax, and the high-intensity exercise is assigned to exercise 4 days a week at 80–85% HRmax. The duration of the intervention is 18 months. Months 19 to 24 are observational

References

    1. Corcos DM, Robichaud JA, David FJ, Leurgans SE, Vaillancourt DE, Poon C, et al. A two-year randomized controlled trial of progressive resistance exercise for Parkinson's disease. Mov Disord. 2013;28(9):1230–1240. doi: 10.1002/mds.25380.
    1. Li F, Harmer P, Fitzgerald K, Eckstrom E, Stock R, Galver J, et al. Tai chi and postural stability in patients with Parkinson's disease. N Engl J Med. 2012;366(6):511–519. doi: 10.1056/NEJMoa1107911.
    1. de Almeida FO, Santana V, Corcos DM, Ugrinowitsch C, Silva-Batista C. Effects of Endurance Training on Motor Signs of Parkinson's Disease: A Systematic Review and Meta-Analysis. Sports Med. 2022;52(8):1789-815. 10.1007/s40279-022-01650-x. Epub 2022 Feb 3.
    1. Ahlskog JE. Aerobic exercise: evidence for a direct brain effect to slow Parkinson disease progression. Mayo Clin Proc. 2018;93(3):360–372. doi: 10.1016/j.mayocp.2017.12.015.
    1. Alberts JL, Rosenfeldt AB. The universal prescription for Parkinson's disease: exercise. J Parkinsons Dis. 2020;10(s1):S21–SS7. doi: 10.3233/JPD-202100.
    1. Bloem BR, Okun MS, Klein C. Parkinson's disease. Lancet. 2021;397(10291):2284–2303. doi: 10.1016/S0140-6736(21)00218-X.
    1. Ellis T, Rochester L. Mobilizing Parkinson's disease: the future of exercise. J Parkinsons Dis. 2018;8(s1):S95–S100. doi: 10.3233/JPD-181489.
    1. Rhyu IJ, Bytheway JA, Kohler SJ, Lange H, Lee KJ, Boklewski J, et al. Effects of aerobic exercise training on cognitive function and cortical vascularity in monkeys. Neuroscience. 2010;167(4):1239–1248. doi: 10.1016/j.neuroscience.2010.03.003.
    1. Sutoo D, Akiyama K. Regulation of brain function by exercise. Neurobiol Dis. 2003;13(1):1–14. doi: 10.1016/S0969-9961(03)00030-5.
    1. Petzinger GM, Fisher BE, Van Leeuwen JE, Vukovic M, Akopian G, Meshul CK, et al. Enhancing neuroplasticity in the basal ganglia: the role of exercise in Parkinson's disease. Mov Disord. 2010;25(Suppl 1):S141–S145. doi: 10.1002/mds.22782.
    1. Vucckovic MG, Li Q, Fisher B, Nacca A, Leahy RM, Walsh JP, et al. Exercise elevates dopamine D2 receptor in a mouse model of Parkinson's disease: in vivo imaging with [(1)F]fallypride. Mov Disord. 2010;25(16):2777–2784. doi: 10.1002/mds.23407.
    1. Robichaud JA, Corcos DM. Motor deficits, exercise and Parkinson's disease. Quest. 2005;57:85–107. doi: 10.1080/00336297.2005.10491844.
    1. Jang Y, Kwon I, Song W, Cosio-Lima LM, Lee Y. Endurance exercise mediates Neuroprotection against MPTP-mediated Parkinson's disease via enhanced neurogenesis, antioxidant capacity, and autophagy. Neuroscience. 2018;379:292–301. doi: 10.1016/j.neuroscience.2018.03.015.
    1. Tillerson JL, Caudle WM, Reveron ME, Miller GW. Exercise induces behavioral recovery and attenuates neurochemical deficits in rodent models of Parkinson's disease. Neuroscience. 2003;119(3):899–911. doi: 10.1016/S0306-4522(03)00096-4.
    1. Tillerson JL, Cohen AD, Philhower J, Miller GW, Zigmond MJ, Schallert T. Forced limb-use effects on the behavioral and neurochemical effects of 6-hydroxydopamine. J Neurosci. 2001;21(12):4427–4435. doi: 10.1523/JNEUROSCI.21-12-04427.2001.
    1. Fisher BE, Petzinger GM, Nixon K, Hogg E, Bremmer S, Meshul CK, et al. Exercise-induced behavioral recovery and neuroplasticity in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse basal ganglia. J Neurosci Res. 2004;77(3):378–390. doi: 10.1002/jnr.20162.
    1. Cameron JL, Rockcastle N, Zigmond MJ, Leak RK, Smith A, Lopresti BJ, et al. Exercise protects the striatum against MPTP damage in nonhuman primates. Chicago: Society for Neuroscience; 2009.
    1. Murrell CJ, Cotter JD, Thomas KN, Lucas SJ, Williams MJ, Ainslie PN. Cerebral blood flow and cerebrovascular reactivity at rest and during sub-maximal exercise: effect of age and 12-week exercise training. Age (Dordr) 2013;35(3):905–920. doi: 10.1007/s11357-012-9414-x.
    1. Landers MR, Navalta JW, Murtishaw AS, Kinney JW, Pirio RS. A high-intensity exercise boot camp for persons with Parkinson disease: a phase II, pragmatic, randomized clinical trial of feasibility, safety, signal of efficacy, and disease mechanisms. J Neurol Phys Ther. 2019;43(1):12–25. doi: 10.1097/NPT.0000000000000249.
    1. Spielman LJ, Little JP, Klegeris A. Physical activity and exercise attenuate neuroinflammation in neurological diseases. Brain Res Bull. 2016;125:19–29. doi: 10.1016/j.brainresbull.2016.03.012.
    1. Svensson M, Lexell J, Deierborg T. Effects of physical exercise on Neuroinflammation, neuroplasticity, Neurodegeneration, and behavior: what we can learn from animal models in clinical settings. Neurorehabil Neural Repair. 2015;29(6):577–589. doi: 10.1177/1545968314562108.
    1. Sleiman SF, Henry J, Al-Haddad R, El Hayek L, Abou Haidar E, Stringer T, Ulja D, Karuppagounder SS, Holson EB, Ratan RR, Ninan I, Chao MV. Exercise promotes the expression of brain derived neurotrophic factor (BDNF) through the action of the ketone body β-hydroxybutyrate. Elife. 2016;5:e15092. 10.7554/eLife.15092.
    1. Toy WA, Petzinger GM, Leyshon BJ, Akopian GK, Walsh JP, Hoffman MV, et al. Treadmill exercise reverses dendritic spine loss in direct and indirect striatal medium spiny neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease. Neurobiol Dis. 2014;63:201–209. doi: 10.1016/j.nbd.2013.11.017.
    1. Schenkman M, Moore CG, Kohrt WM, Hall DA, Delitto A, Comella CL, et al. Effect of high-intensity treadmill exercise on motor symptoms in patients with De novo Parkinson disease: a phase 2 randomized clinical trial. JAMA Neurol. 2018;75(2):219–226. doi: 10.1001/jamaneurol.2017.3517.
    1. Moore CG, Schenkman M, Kohrt WM, Delitto A, Hall DA, Corcos D. Study in Parkinson disease of exercise (SPARX): translating high-intensity exercise from animals to humans. Contemp Clin Trials. 2013;36(1):90–98. doi: 10.1016/j.cct.2013.06.002.
    1. Hughes AJ, Ben-Shlomo Y, Daniel SE, Lees AJ. What features improve the accuracy of clinical diagnosis in Parkinson's disease: a clinicopathologic study. Neurology. 1992;42(6):1142–1146. doi: 10.1212/WNL.42.6.1142.
    1. Hughes AJ, Ben-Shlomo Y, Daniel SE, Lees AJ. What features improve the accuracy of clinical diagnosis in Parkinson's disease: a clinicopathologic study. 1992. Neurology. 2001;57(10 Suppl 3):S34–S38.
    1. Berardelli A, Wenning GK, Antonini A, Berg D, Bloem BR, Bonifati V, et al. EFNS/MDS-ES/ENS [corrected] recommendations for the diagnosis of Parkinson's disease. Eur J Neurol. 2013;20(1):16–34. doi: 10.1111/ene.12022.
    1. Berg D, Adler CH, Bloem BR, Chan P, Gasser T, Goetz CG, et al. Movement disorder society criteria for clinically established early Parkinson's disease. Mov Disord. 2018;33(10):1643–1646. doi: 10.1002/mds.27431.
    1. American College of Sports Medicine . ACSM's guidelines for exercise testing and prescription. 11. Philadelphia: Wolters Kluter; 2021.
    1. Alberts JL, Linder SM, Penko AL, Lowe MJ, Phillips M. It is not about the bike, it is about the pedaling: forced exercise and Parkinson's disease. Exerc Sport Sci Rev. 2011;39(4):177–186. doi: 10.1097/JES.0b013e31822cc71a.
    1. Kanegusuku H, Silva-Batista C, Pecanha T, Nieuwboer A, Silva ND, Jr, Costa LA, et al. Blunted maximal and submaximal responses to cardiopulmonary exercise tests in patients with Parkinson disease. Arch Phys Med Rehabil. 2016;97(5):720–725. doi: 10.1016/j.apmr.2015.12.020.
    1. Kohrt WM, Malley MT, Coggan AR, Spina RJ, Ogawa T, Ehsani AA, et al. Effects of gender, age, and fitness level on response of VO2max to training in 60-71 yr olds. J Appl Physiol (1985) 1991;71(5):2004–2011. doi: 10.1152/jappl.1991.71.5.2004.
    1. Loe H, Rognmo O, Saltin B, Wisloff U. Aerobic capacity reference data in 3816 healthy men and women 20-90 years. PLoS One. 2013;8(5):e64319. doi: 10.1371/journal.pone.0064319.
    1. Nazari G, MacDermid JC, Sinden KE, Richardson J, Tang A. Reliability of Zephyr bioharness and Fitbit charge measures of heart rate and activity at rest, during the modified Canadian aerobic fitness test, and recovery. J Strength Cond Res. 2019;33(2):559–571. doi: 10.1519/JSC.0000000000001842.
    1. Eston R, Connolly D. The use of ratings of perceived exertion for exercise prescription in patients receiving beta-blocker therapy. Sports Med. 1996;21(3):176–190. doi: 10.2165/00007256-199621030-00003.
    1. Goetz CG, Tilley BC, Shaftman SR, Stebbins GT, Fahn S, Martinez-Martin P, et al. Movement Disorder Society-sponsored revision of the unified Parkinson's disease rating scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov Disord. 2008;23(15):2129–2170. doi: 10.1002/mds.22340.
    1. Fahn S, Parkinson Study G Does levodopa slow or hasten the rate of progression of Parkinson's disease? J Neurol. 2005;252 Suppl 4:IV37–IV42.
    1. Marek K, Seibyl J, Eberly S, Oakes D, Shoulson I, Lang AE, et al. Longitudinal follow-up of SWEDD subjects in the PRECEPT study. Neurology. 2014;82(20):1791–1797. doi: 10.1212/WNL.0000000000000424.
    1. Simuni T, Siderowf A, Lasch S, Coffey CS, Caspell-Garcia C, Jennings D, et al. Longitudinal change of clinical and biological measures in early Parkinson's disease: Parkinson's progression markers initiative cohort. Mov Disord. 2018;33(5):771–782. doi: 10.1002/mds.27361.
    1. Marek K, Chowdhury S, Siderowf A, Lasch S, Coffey CS, Caspell-Garcia C, et al. The Parkinson's progression markers initiative (PPMI) - establishing a PD biomarker cohort. Ann Clin Transl Neurol. 2018;5(12):1460–1477. doi: 10.1002/acn3.644.
    1. Koros C, Simitsi AM, Prentakis A, Papagiannakis N, Bougea A, Pachi I, et al. DaTSCAN (123I-FP-CIT SPECT) imaging in early versus mid and late onset Parkinson's disease: longitudinal data from the PPMI study. Parkinsonism Relat Disord. 2020;77:36–42. doi: 10.1016/j.parkreldis.2020.06.019.
    1. Bohannon RW, Crouch R. Minimal clinically important difference for change in 6-minute walk test distance of adults with pathology: a systematic review. J Eval Clin Pract. 2017;23(2):377–381. doi: 10.1111/jep.12629.
    1. Holland AE, Spruit MA, Troosters T, Puhan MA, Pepin V, Saey D, et al. An official European Respiratory Society/American Thoracic Society technical standard: field walking tests in chronic respiratory disease. Eur Respir J. 2014;44(6):1428–1446. doi: 10.1183/09031936.00150314.
    1. Bloem BR, Marinus J, Almeida Q, Dibble L, Nieuwboer A, Post B, et al. Measurement instruments to assess posture, gait, and balance in Parkinson's disease: critique and recommendations. Mov Disord. 2016;31(9):1342–1355. doi: 10.1002/mds.26572.
    1. Steffen T, Seney M. Test-retest reliability and minimal detectable change on balance and ambulation tests, the 36-item short-form health survey, and the unified Parkinson disease rating scale in people with parkinsonism. Phys Ther. 2008;88(6):733–746. doi: 10.2522/ptj.20070214.
    1. Ross R, Blair SN, Arena R, Church TS, Despres JP, Franklin BA, et al. Importance of assessing cardiorespiratory fitness in clinical practice: a case for fitness as a clinical vital sign: a scientific statement from the American Heart Association. Circulation. 2016;134(24):e653–ee99. doi: 10.1161/CIR.0000000000000461.
    1. Jenkinson C, Fitzpatrick R, Peto V, Greenhall R, Hyman N. The Parkinson's disease questionnaire (PDQ-39): development and validation of a Parkinson's disease summary index score. Age Ageing. 1997;26(5):353–357. doi: 10.1093/ageing/26.5.353.
    1. Song IU, Chung SW, Kim JS, Lee KS. Association between high-sensitivity C-reactive protein and risk of early idiopathic Parkinson's disease. Neurol Sci. 2011;32(1):31–34. doi: 10.1007/s10072-010-0335-0.
    1. Wang Y, Liu H, Zhang BS, Soares JC, Zhang XY. Low BDNF is associated with cognitive impairments in patients with Parkinson's disease. Parkinsonism Relat Disord. 2016;29:66–71. doi: 10.1016/j.parkreldis.2016.05.023.
    1. Kohut ML, McCann DA, Russell DW, Konopka DN, Cunnick JE, Franke WD, et al. Aerobic exercise, but not flexibility/resistance exercise, reduces serum IL-18, CRP, and IL-6 independent of beta-blockers, BMI, and psychosocial factors in older adults. Brain Behav Immun. 2006;20(3):201–209. doi: 10.1016/j.bbi.2005.12.002.
    1. Frazzitta G, Maestri R, Ghilardi MF, Riboldazzi G, Perini M, Bertotti G, et al. Intensive rehabilitation increases BDNF serum levels in parkinsonian patients: a randomized study. Neurorehabil Neural Repair. 2014;28(2):163–168. doi: 10.1177/1545968313508474.
    1. Mirelman A, Bonato P, Camicioli R, Ellis TD, Giladi N, Hamilton JL, et al. Gait impairments in Parkinson's disease. Lancet Neurol. 2019;18(7):697–708. doi: 10.1016/S1474-4422(19)30044-4.
    1. Hasegawa N, Shah VV, Harker G, Carlson-Kuhta P, Nutt JG, Lapidus JA, et al. Responsiveness of objective vs. clinical balance domain outcomes for exercise intervention in Parkinson's disease. Front Neurol. 2020;11:940. doi: 10.3389/fneur.2020.00940.
    1. Nowinski CJ, Siderowf A, Simuni T, Wortman C, Moy C, Cella D. Neuro-QoL health-related quality of life measurement system: validation in Parkinson's disease. Mov Disord. 2016;31(5):725–733. doi: 10.1002/mds.26546.
    1. Ridgel AL, Vitek JL, Alberts JL. Forced, not voluntary, exercise improves motor function in Parkinson's disease patients. Neurorehabil Neural Repair. 2009;23(6):600–608. doi: 10.1177/1545968308328726.
    1. Jain S, Goldstein DS. Cardiovascular dysautonomia in Parkinson disease: from pathophysiology to pathogenesis. Neurobiol Dis. 2012;46(3):572–580. doi: 10.1016/j.nbd.2011.10.025.
    1. National Institute of Neurological Disorders and Stroke (NINDS) Biospecimen Exchange for Neurological Disorders (BioSEND). Indiana University; 2021. Copyright © . Accessed 9 Nov 2022.
    1. Cagney DN, Sul J, Huang RY, Ligon KL, Wen PY, Alexander BM. The FDA NIH biomarkers, EndpointS, and other tools (BEST) resource in neuro-oncology. Neuro-Oncology. 2018;20(9):1162–1172. doi: 10.1093/neuonc/nox242.
    1. Bandura A. Health promotion by social cognitive means. Health Educ Behav. 2004;31(2):143–164. doi: 10.1177/1090198104263660.
    1. McAuley E. The role of efficacy cognitions in the prediction of exercise behavior in middle-aged adults. J Behav Med. 1992;15(1):65–88. doi: 10.1007/BF00848378.
    1. McAuley E. Self-efficacy and the maintenance of exercise participation in older adults. J Behav Med. 1993;16(1):103–113. doi: 10.1007/BF00844757.
    1. McAuley E, Motl RW, White SM, Wojcicki TR. Validation of the multidimensional outcome expectations for exercise scale in ambulatory, symptom-free persons with multiple sclerosis. Arch Phys Med Rehabil. 2010;91(1):100–105. doi: 10.1016/j.apmr.2009.09.011.
    1. Motl RW, Snook EM, McAuley E, Scott JA, Douglass ML. Correlates of physical activity among individuals with multiple sclerosis. Ann Behav Med. 2006;32(2):154–161. doi: 10.1207/s15324796abm3202_13.
    1. Rovniak LS, Anderson ES, Winett RA, Stephens RS. Social cognitive determinants of physical activity in young adults: a prospective structural equation analysis. Ann Behav Med. 2002;24(2):149–156. doi: 10.1207/S15324796ABM2402_12.
    1. Simuni T, Caspell-Garcia C, Seedorff N, Coffey CS, Lasch B, Mollenhauer B, et al. Sample size estimation for clinical trials in de novo Parkinson’s disease (PD): results from the Parkinson’s progression markers initiative (PPMI) study [abstract]. Mov Disord. 2017;32(suppl 2) . Accessed 12 Jan 2019.
    1. Horvath K, Aschermann Z, Acs P, Deli G, Janszky J, Komoly S, et al. Minimal clinically important difference on the motor examination part of MDS-UPDRS. Parkinsonism Relat Disord. 2015;21(12):1421–1426. doi: 10.1016/j.parkreldis.2015.10.006.
    1. van der Kolk NM, de Vries NM, Kessels RPC, Joosten H, Zwinderman AH, Post B, et al. Effectiveness of home-based and remotely supervised aerobic exercise in Parkinson's disease: a double-blind, randomised controlled trial. Lancet Neurol. 2019;18(11):998–1008. doi: 10.1016/S1474-4422(19)30285-6.
    1. Mak MKY, Wong-Yu ISK. Six-month community-based brisk walking and balance exercise alleviates motor symptoms and promotes functions in people with Parkinson's disease: a randomized controlled trial. J Parkinsons Dis. 2021;11(3):1431–1441. doi: 10.3233/JPD-202503.
    1. Parashos SA, Luo S, Biglan KM, Bodis-Wollner I, He B, Liang GS, et al. Measuring disease progression in early Parkinson disease: the National Institutes of Health exploratory trials in Parkinson disease (NET-PD) experience. JAMA Neurol. 2014;71(6):710–716. doi: 10.1001/jamaneurol.2014.391.
    1. Gilbert RM, Standaert DG. Bridging the gaps: more inclusive research needed to fully understand Parkinson's disease. Mov Disord. 2020;35(2):231–234. doi: 10.1002/mds.27906.
    1. Tilley BC, Mainous AG, 3rd, Amorrortu RP, McKee MD, Smith DW, Li R, et al. Using increased trust in medical researchers to increase minority recruitment: the RECRUIT cluster randomized clinical trial. Contemp Clin Trials. 2021;109:106519. doi: 10.1016/j.cct.2021.106519.
    1. Gwinn K, David KK, Swanson-Fischer C, Albin R, Hillaire-Clarke CS, Sieber BA, et al. Parkinson's disease biomarkers: perspective from the NINDS Parkinson's disease biomarkers program. Biomark Med. 2017;11(6):451–473. doi: 10.2217/bmm-2016-0370.
    1. Parkinson Study Group S-PDI. Schwarzschild MA, Ascherio A, Beal MF, Cudkowicz ME, Curhan GC, et al. Inosine to increase serum and cerebrospinal fluid urate in Parkinson disease: a randomized clinical trial. JAMA Neurol. 2014;71(2):141–150. doi: 10.1001/jamaneurol.2013.5528.
    1. Parkinson Study Group S-PDI. Schwarzschild MA, Ascherio A, Casaceli C, Curhan GC, Fitzgerald R, et al. Effect of Urate-elevating Inosine on early Parkinson disease progression: the SURE-PD3 randomized clinical trial. JAMA. 2021;326(10):926–939. doi: 10.1001/jama.2021.10207.
    1. Wittes J, Schabenberger O, Zucker D, Brittain E, Proschan M. Internal pilot studies I: type I error rate of the naive t-test. Stat Med. 1999;18(24):3481–3491. doi: 10.1002/(SICI)1097-0258(19991230)18:24<3481::AID-SIM301>;2-C.
    1. Stebbins GT, Goetz CG, Burn DJ, Jankovic J, Khoo TK, Tilley BC. How to identify tremor dominant and postural instability/gait difficulty groups with the movement disorder society unified Parkinson's disease rating scale: comparison with the unified Parkinson's disease rating scale. Mov Disord. 2013;28(5):668–670. doi: 10.1002/mds.25383.
    1. Aleksovski D, Miljkovic D, Bravi D, Antonini A. Disease progression in Parkinson subtypes: the PPMI dataset. Neurol Sci. 2018;39(11):1971–1976. doi: 10.1007/s10072-018-3522-z.
    1. The NINDS NET-PD Investigators A randomized clinical trial of coenzyme Q10 and GPI-1485 in early Parkinson disease. Neurology. 2007;68(1):20–28. doi: 10.1212/01.wnl.0000250355.28474.8e.
    1. The NINDS NET-PD Investigators A randomized, double-blind, futility clinical trial of creatine and minocycline in early Parkinson disease. Neurology. 2006;66(5):664–671. doi: 10.1212/01.wnl.0000201252.57661.e1.
    1. Lewis SJ, Foltynie T, Blackwell AD, Robbins TW, Owen AM, Barker RA. Heterogeneity of Parkinson's disease in the early clinical stages using a data driven approach. J Neurol Neurosurg Psychiatry. 2005;76(3):343–348. doi: 10.1136/jnnp.2003.033530.
    1. Hedeker D, Gibbons RD. Application of random-effects pattern-mixture models for missing data in longitudinal studies. Psychol Methods. 1997;2(1):64–78. doi: 10.1037/1082-989X.2.1.64.
    1. Biglan KM, Oakes D, Lang AE, Hauser RA, Hodgeman K, Greco B, et al. A novel design of a phase III trial of isradipine in early Parkinson disease (STEADY-PD III) Ann Clin Transl Neurol. 2017;4(6):360–368. doi: 10.1002/acn3.412.
    1. Lang AE, Espay AJ. Disease modification in Parkinson's disease: current approaches, challenges, and future considerations. Mov Disord. 2018;33(5):660–677. doi: 10.1002/mds.27360.
    1. Parkinson Study Group S-PDIIII Isradipine versus placebo in early Parkinson disease: a randomized trial. Ann Intern Med. 2020;172(9):591–598. doi: 10.7326/M19-2534.
    1. Conrado DJ, Nicholas T, Tsai K, Macha S, Sinha V, Stone J, et al. Dopamine transporter neuroimaging as an enrichment biomarker in early Parkinson's disease clinical trials: a disease progression modeling analysis. Clin Transl Sci. 2018;11(1):63–70. doi: 10.1111/cts.12492.
    1. Liu R, Umbach DM, Troster AI, Huang X, Chen H. Non-motor symptoms and striatal dopamine transporter binding in early Parkinson's disease. Parkinsonism Relat Disord. 2020;72:23–30. doi: 10.1016/j.parkreldis.2020.02.001.
    1. Shulman LM, Katzel LI, Ivey FM, Sorkin JD, Favors K, Anderson KE, et al. Randomized clinical trial of 3 types of physical exercise for patients with Parkinson disease. JAMA Neurol. 2013;70(2):183–190. doi: 10.1001/jamaneurol.2013.646.
    1. Tollar J, Nagy F, Hortobagyi T. Vastly different exercise programs similarly improve Parkinsonian symptoms: a randomized clinical trial. Gerontology. 2019;65(2):120–127. doi: 10.1159/000493127.
    1. Lin CH, Li CH, Yang KC, Lin FJ, Wu CC, Chieh JJ, et al. Blood NfL: a biomarker for disease severity and progression in Parkinson disease. Neurology. 2019;93(11):e1104–e1e11. doi: 10.1212/WNL.0000000000008088.
    1. Marques TM, van Rumund A, Oeckl P, Kuiperij HB, Esselink RAJ, Bloem BR, et al. Serum NFL discriminates Parkinson disease from atypical parkinsonisms. Neurology. 2019;92(13):e1479–e1e86. doi: 10.1212/WNL.0000000000007179.
    1. Quadalti C, Calandra-Buonaura G, Baiardi S, Mastrangelo A, Rossi M, Zenesini C, et al. Neurofilament light chain and alpha-synuclein RT-QuIC as differential diagnostic biomarkers in parkinsonisms and related syndromes. NPJ Parkinsons Dis. 2021;7(1):93. doi: 10.1038/s41531-021-00232-4.
    1. Aamodt WW, Waligorska T, Shen J, Tropea TF, Siderowf A, Weintraub D, et al. Neurofilament light chain as a biomarker for cognitive decline in Parkinson disease. Mov Disord. 2021;36(12):2945–2950. doi: 10.1002/mds.28779.
    1. Pilotto A, Imarisio A, Conforti F, Scalvini A, Masciocchi S, Nocivelli S, et al. Plasma NfL, clinical subtypes and motor progression in Parkinson's disease. Parkinsonism Relat Disord. 2021;87:41–47. doi: 10.1016/j.parkreldis.2021.04.016.
    1. Ye R, Locascio JJ, Goodheart AE, Quan M, Zhang B, Gomperts SN. Serum NFL levels predict progression of motor impairment and reduction in putamen dopamine transporter binding ratios in de novo Parkinson's disease: an 8-year longitudinal study. Parkinsonism Relat Disord. 2021;85:11–16. doi: 10.1016/j.parkreldis.2021.02.008.
    1. Diaz K, Kohut ML, Russell DW, Stegemoller EL. Peripheral inflammatory cytokines and motor symptoms in persons with Parkinson's disease. Brain Behav Immun Health. 2022;21:100442. doi: 10.1016/j.bbih.2022.100442.
    1. Kurosu H, Yamamoto M, Clark JD, Pastor JV, Nandi A, Gurnani P, et al. Suppression of aging in mice by the hormone Klotho. Science. 2005;309(5742):1829–1833. doi: 10.1126/science.1112766.
    1. Dubal DB, Zhu L, Sanchez PE, Worden K, Broestl L, Johnson E, et al. Life extension factor klotho prevents mortality and enhances cognition in hAPP transgenic mice. J Neurosci. 2015;35(6):2358–2371. doi: 10.1523/JNEUROSCI.5791-12.2015.
    1. Dubal DB, Yokoyama JS, Zhu L, Broestl L, Worden K, Wang D, et al. Life extension factor klotho enhances cognition. Cell Rep. 2014;7(4):1065–1076. doi: 10.1016/j.celrep.2014.03.076.
    1. Zimmermann M, Kohler L, Kovarova M, Lerche S, Schulte C, Wurster I, et al. The longevity gene Klotho and its cerebrospinal fluid protein profiles as a modifier for Parkinson s disease. Eur J Neurol. 2021;28(5):1557–1565. doi: 10.1111/ene.14733.
    1. Amaro-Gahete FJ, De-la OA, Jurado-Fasoli L, Espuch-Oliver A, de Haro T, Gutierrez A, et al. Exercise training increases the S-Klotho plasma levels in sedentary middle-aged adults: a randomised controlled trial. The FIT-AGEING study. J Sports Sci. 2019;37(19):2175–2183. doi: 10.1080/02640414.2019.1626048.
    1. Iturriaga T, Yvert T, Sanchez-Lorente IM, Diez-Vega I, Fernandez-Elias VE, Sanchez-Barroso L, et al. Acute impacts of different types of exercise on circulating alpha-Klotho protein levels. Front Physiol. 2021;12:716473. doi: 10.3389/fphys.2021.716473.
    1. Horowitz AM, Fan X, Bieri G, Smith LK, Sanchez-Diaz CI, Schroer AB, et al. Blood factors transfer beneficial effects of exercise on neurogenesis and cognition to the aged brain. Science. 2020;369(6500):167–73.
    1. De Miguel Z, Khoury N, Betley MJ, Lehallier B, Willoughby D, Olsson N, et al. Exercise plasma boosts memory and dampens brain inflammation via clusterin. Nature. 2021;600(7889):494–499. doi: 10.1038/s41586-021-04183-x.
    1. Townsend LK, MacPherson REK, Wright DC. New horizon: exercise and a focus on tissue-brain crosstalk. J Clin Endocrinol Metab. 2021;106(8):2147–2163. doi: 10.1210/clinem/dgab333.
    1. Contrepois K, Wu S, Moneghetti KJ, Hornburg D, Ahadi S, Tsai MS, et al. Molecular choreography of acute exercise. Cell. 2020;181(5):1112–30 e16. doi: 10.1016/j.cell.2020.04.043.
    1. Kim R, Park S, Yoo D, Jun JS, Jeon B. Association of Physical Activity and APOE genotype with longitudinal cognitive change in early Parkinson disease. Neurology. 2021;96(19):e2429–e2e37. doi: 10.1212/WNL.0000000000011852.
    1. Ebanks B, Ingram TL, Katyal G, Ingram JR, Moisoi N, Chakrabarti L. The dysregulated Pink1(-) drosophila mitochondrial proteome is partially corrected with exercise. Aging (Albany NY) 2021;13(11):14709–14728. doi: 10.18632/aging.203128.
    1. Lasagna L. Problems in publication of clinical trial methodology. Clin Pharmacol Ther. 1979;25(5 Pt 2):751–753. doi: 10.1002/cpt1979255part2751.
    1. Feinstein AR. Principles of medical statistics. New York: Chapman and Hall/CRC; 2001.
    1. Fogel DB. Factors associated with clinical trials that fail and opportunities for improving the likelihood of success: a review. Contemp Clin Trials Commun. 2018;11:156–164. doi: 10.1016/j.conctc.2018.08.001.
    1. Schneider MG, Swearingen CJ, Shulman LM, Ye J, Baumgarten M, Tilley BC. Minority enrollment in Parkinson's disease clinical trials. Parkinsonism Relat Disord. 2009;15(4):258–262. doi: 10.1016/j.parkreldis.2008.06.005.
    1. Lau YH, Podlewska A, Ocloo J, Gupta A, Gonde C, Bloem BR, Chaudhuri KR. Does Ethnicity Influence Recruitment into Clinical Trials of Parkinson's Disease? J Parkinsons Dis. 2022;12(3):975-81. 10.3233/JPD-213113.
    1. Di Luca DG, Sambursky JA, Margolesky J, Cordeiro JG, Diaz A, Shpiner DS, et al. Minority enrollment in Parkinson's disease clinical trials: meta-analysis and systematic review of studies evaluating treatment of neuropsychiatric symptoms. J Parkinsons Dis. 2020;10(4):1709–1716. doi: 10.3233/JPD-202045.
    1. Sacheli MA, Neva JL, Lakhani B, Murray DK, Vafai N, Shahinfard E, et al. Exercise increases caudate dopamine release and ventral striatal activation in Parkinson's disease. Mov Disord. 2019;34(12):1891–1900. doi: 10.1002/mds.27865.

Source: PubMed

3
Prenumerera