Patient-specific PEEK implants for immediate restoration of temporal fossa after maxillary reconstruction with temporalis muscle flap

Sherif Ali, Omniya Abdel Aziz, Mamdouh Ahmed, Sherif Ali, Omniya Abdel Aziz, Mamdouh Ahmed

Abstract

Background: Temporal hollowing is a common complication following the rotation of the temporalis muscle that leaves the patient with a cosmetic impairment. Several alloplastic materials have been used to reconstruct the donor site; however, these implants need meticulous adaptation to conform the periphery of the defect and restore the contour of the temporal area. The aim of this study was to assess the use of patient-specific polyetheretherketone (PEEK) temporal implants to prevent temporal hollowing following the use of full temporalis muscle flap for large maxillary defects reconstruction.

Methods: This was a prospective study conducted on eight patients with major maxillary defects indicating the need of reconstruction with full temporalis muscle flap or any lesion indicating major maxillary resection and immediate reconstruction with total temporalis muscle flap. For each patient, a patient-specific PEEK implant was fabricated using virtual planning and milled from PEEK blocks. In the surgical theater, the temporalis muscle was exposed, elevated, and transferred to the maxilla. After the temporalis muscle transfer, PEEK implants were fixed in place to prevent temporal hollowing.

Results: The surgical procedures were uneventful for all patients. The esthetic result was satisfactory with no post-operative complications except in one patient where seroma occurred after 2 weeks and resolved after serial aspiration.

Conclusion: Patient-specific PEEK implant appears to facilitate the surgical procedures eliminate several meticulous steps that are mainly based on the surgeon's experience.

Trial registration: Clinical trials registration: NCT05240963 .

Keywords: Computer-assisted surgery; Maxillofacial reconstruction; Patient-specific implants; Rapid prototyping; Temporal hollowing; Temporalis flap.

Conflict of interest statement

The authors have no relevant financial or non-financial interests to disclose.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
The temporalis muscle virtually segmented and separated (green)
Fig. 2
Fig. 2
The muscle refined to create the final virtual temporal implant (red)
Fig. 3
Fig. 3
The virtual implant formed of four interlocking parts
Fig. 4
Fig. 4
The printed patient-specific PEEK implants
Fig. 5
Fig. 5
The temporalis muscle before elevation
Fig. 6
Fig. 6
The temporalis muscle after elevation and the PEEK implant parts initially seated in place
Fig. 7
Fig. 7
The PEEK implant fixed in position
Fig. 8
Fig. 8
Incisions sutured in layers
Fig. 9
Fig. 9
Photograph of the patient 4 weeks after the surgery

References

    1. Lam D, Carlson ER. The temporalis muscle flap and temporoparietal fascial flap. Oral Maxillofac Surg Clin North Am. 2014;26(3):359–369. doi: 10.1016/j.coms.2014.05.004.
    1. Edwards SP, Feinberg SE. The temporalis muscle flap in contemporary oral and maxillofacial surgery. Oral Maxillofac Surg Clin North Am. 2003;15(4):513–535. doi: 10.1016/S1042-3699(03)00059-1.
    1. Laloze J, Brie J, Chaput B, Usseglio J. Depression after temporal muscle flap: a systematic review of the literature. J Craniomaxillofac Surg. 2019;47(7):1104–1109. doi: 10.1016/j.jcms.2019.03.031.
    1. Habel G, Hensher R. The versatility of the temporalis muscle flap in reconstructive surgery. Br J Oral Maxillofac Surg. 1986;24(2):96–101. doi: 10.1016/0266-4356(86)90003-3.
    1. Abubaker AO, Abouzgia MB. The temporalis muscle flap in reconstruction of intraoral defects: an appraisal of the technique. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2002;94:24–30. doi: 10.1067/moe.2002.126077.
    1. Cheung LK, Samman N, Tideman H. The use of mouldable acrylic for restoration of the temporalis flap donor site. J Craniomaxillofac Surg. 1994;22(6):335–341. doi: 10.1016/S1010-5182(05)80114-3.
    1. Rapidis AD, Day TA. The use of temporal polyethylene implant after temporalis myofascial flap transposition: clinical and radiographic results from its use in 21 patients. J Oral Maxillofac Surg. 2006;64(1):12–22. doi: 10.1016/j.joms.2005.09.008.
    1. Muhanad H, Jason W, Andrew R, Dilip S. A novel approach to immediate restoration of the cosmetic deformity after regional temporalis flap reconstruction of a maxillary defect: a case report. J Craniofac Surg. 2013;24(6):2186–2189. doi: 10.1097/SCS.0b013e3182a41c7f.
    1. Donald AD, Naresh J, Niall K. Augmentation of temporal fossa hollowing with mersilene mesh. J Plast Reconstr Aesthet Surg. 2010;63(10):1629–1634. doi: 10.1016/j.bjps.2009.09.022.
    1. Cervelli D, Gasparini G, Grussu F, Moro A, Marianetti TM, Foresta E, Azzuni C, Pelo S. Autologous fat transplantation for the temporalis muscle flap donor site: our experience with 45 cases. Head Neck. 2014;36(9):1296–1304.
    1. Ahmed M, Soliman S, Noman SA, Ali S. Computer-guided contouring of craniofacial fibrous dysplasia involving the zygoma using a patient-specific surgical depth guide. Int J Oral Maxillofac Surg. 2020;49(12):1605–1610. doi: 10.1016/j.ijom.2020.04.009.
    1. Kim JH, Lee R, Shin CH, Kim HK, Han YS. Temporal augmentation with calvarial onlay graft during pterional craniotomy for prevention of temporal hollowing. Arch Craniofac Surg. 2018;19(2):94–101. doi: 10.7181/acfs.2018.01781.
    1. Mandlik D, Gupta K, Patel D, Patel P, Toprani R, Patel K. Use of Polymethyl Methacrylate-Based Cement for Cosmetic Correction of Donor-Site Defect following Transposition of Temporalis Myofascial Flap and Evaluation of Results after Adjuvant Radiotherapy. J Reconstr Microsurg. 2015;31(9):668–673. doi: 10.1055/s-0035-1558988.
    1. Laloze J, Brie J, Chaput B, Usseglio J. Use of PermacolTM to restore depression after temporal muscle flap: A case report. J Stomatol Oral Maxillofac Surg. 2020;121(3):292–295. doi: 10.1016/j.jormas.2019.07.012.
    1. Kim YS, Yi HS, Kim HK, Han YS. Effectiveness of Temporal Augmentation Using a Calvarial Onlay Graft during Pterional Craniotomy. Arch Plast Surg. 2019;43(2):204–209.
    1. Falconer DT, Phillips JG. Reconstruction of the defect at the donor site of the temporalis muscle flap. Br J Oral Maxillofac Surg. 1991;29(1):16–18. doi: 10.1016/0266-4356(91)90167-4.
    1. Wright S, Bekiroglu F, Whear NM, Grew NR. Use of Palacos®R-40 with gentamicin to reconstruct temporal defects after maxillofacial reconstructions with temporalis flaps. Br J Oral Maxillofac Surg. 2006;44(6):531–533. doi: 10.1016/j.bjoms.2005.11.014.
    1. Lacey M, Antonyshyn O. Use of porous high-density polyethylene implants in temporal contour reconstruction. J Craniofac Surg. 1993;4(2):74–78. doi: 10.1097/00001665-199304000-00004.
    1. Worley CM, Strauss RA. Augmentation of the anterior temporal fossa after temporalis muscle transfer. Oral Surg Oral Med Oral Pathol. 1994;78(2):146–150. doi: 10.1016/0030-4220(94)90137-6.
    1. Baj A, Spotti S, Marelli S, Beltramini GA, Giannì AB. Use of porous polyethylene for correcting defects of temporal region following transposition of temporalis myofascial flap. Acta Otorhinolaryngol Ital. 2009;29(5):265–269.
    1. Vaishya R, Chauhan M, Vaish A. Bone cement. J Clin Orthop. Trauma. 2013;4(4):157–163.
    1. Arora M, Chan EK, Gupta S, Diwan AD. Polymethylmethacrylate bone cements and additives: A review of the literature. World J Orthop. 2013;4(2):67–74. doi: 10.5312/wjo.v4.i2.67.
    1. Ridwan-Pramana A, Wolff J, Raziei A, Ashton-James CE, Forouzanfar T. Porous polyethylene implants in facial reconstruction: Outcome and complications. J Craniomaxillofac Surg. 2015;43(8):1330–1334. doi: 10.1016/j.jcms.2015.06.022.
    1. Mansour Khorasani M, Janbaz P, Rayati F. Maxillofacial reconstruction with Medpor porous polyethylene implant: a case series study. J Korean Assoc Oral Maxillofac Surg. 2018;44(3):128–135. doi: 10.5125/jkaoms.2018.44.3.128.
    1. Honigmann P, Sharma N, Okolo B, Popp U, Msallem B, Thieringer FM. Patient-Specific Surgical Implants Made of 3D Printed PEEK: Material, Technology, and Scope of Surgical Application. Biomed Res Int. 2018;19(2018):4520636.
    1. Jonkergouw J, Van de Vijfeijken SECM, Nout E, Theys T, Van de Casteele E, Folkersma H, Depauw PRAM, Becking AG. Outcome in patient-specific PEEK cranioplasty: A two-center cohort study of 40 implants. J Craniomaxillofac Surg. 2016;44(9):1266–1272. doi: 10.1016/j.jcms.2016.07.005.
    1. Punchak M, Chung LK, Lagman C, Bui TT, Lazareff J, Rezzadeh K, Jarrahy R, Yang I. Outcomes following polyetheretherketone (PEEK) cranioplasty: Systematic review and meta-analysis. J Clin Neurosci. 2017;41:30–35. doi: 10.1016/j.jocn.2017.03.028.
    1. Jalbert F, Boetto S, Nadon F, Lauwers F, Schmidt E, Lopez R. One-step primary reconstruction for complex craniofacial resection with PEEK custom-made implants. J Craniomaxillofac Surg. 2014;42(2):141–148. doi: 10.1016/j.jcms.2013.04.001.
    1. Alonso-Rodriguez E, Cebrián JL, Nieto MJ, Del Castillo JL, Hernández-Godoy J, Burgueño M. Polyetheretherketone custom-made implants for craniofacial defects: Report of 14 cases and review of the literature. J Craniomaxillofac Surg. 2015;43(7):1232–1238. doi: 10.1016/j.jcms.2015.04.028.
    1. Gerbino G, Zavattero E, Zenga F, Bianchi FA, Garzino-Demo P, Berrone S. Primary and secondary reconstruction of complex craniofacial defects using polyetheretherketone custom-made implants. J Craniomaxillofac Surg. 2015;43(8):1356–1363. doi: 10.1016/j.jcms.2015.06.043.
    1. Järvinen S, Suojanen J, Kormi E, Wilkman T, Kiukkonen A, Leikola J, Stoor P. The use of patient specific polyetheretherketone implants for reconstruction of maxillofacial deformities. J Craniomaxillofac Surg. 2019;47(7):1072–1076. doi: 10.1016/j.jcms.2019.03.018.
    1. Dodier P, Winter F, Auzinger T, Mistelbauer G, Frischer JM, Wang WT, Mallouhi A, Marik W, Wolfsberger S, Reissig L, Hammadi F, Matula C, Baumann A, Bavinzski G. Single-stage bone resection and cranioplastic reconstruction: comparison of a novel software-derived PEEK workflow with the standard reconstructive method. Int J Oral Maxillofac Surg. 2020;49(8):1007–1015. doi: 10.1016/j.ijom.2019.11.011.
    1. Maricevich JPBR, Cezar AB, De Oliveira EX, Silva JAMV, Maricevich RS, Almeida NS, Azevedo-Filho HRC. Adhesion sutures for seroma reduction in cranial reconstructions with polymethyl methacrylate prosthesis in patients undergoing decompressive craniectomy: A clinical trial. Surg Neurol Int. 2018;22(9):168. doi: 10.4103/sni.sni_102_18.

Source: PubMed

3
Prenumerera