GWAS identifies an NAT2 acetylator status tag single nucleotide polymorphism to be a major locus for skin fluorescence

Karen M Eny, Helen L Lutgers, John Maynard, Barbara E K Klein, Kristine E Lee, Gil Atzmon, Vincent M Monnier, Jana V van Vliet-Ostaptchouk, Reindert Graaff, Pim van der Harst, Harold Snieder, Melanie M van der Klauw, David R Sell, S Mohsen Hosseini, Patricia A Cleary, Barbara H Braffett, Trevor J Orchard, Timothy J Lyons, Kerri Howard, Ronald Klein, Jill P Crandall, Nir Barzilai, Sofiya Milman, Danny Ben-Avraham, LifeLines Cohort Study Group, DCCT/EDIC Research Group, Bruce H R Wolffenbuttel, Andrew D Paterson, Behrooz Z Alizadeh, Rudolf A de Boer, H Marike Boezen, Marcel Bruinenberg, Lude Franke, Pim van der Harst, Hans L Hillege, Melanie M van der Klauw, Gerjan Navis, Johan Ormel, Dirkje S Postma, Judith G M Rosmalen, Joris P Slaets, Harold Snieder, Ronald P Stolk, Bruce H R Wolffenbuttel, Cisca Wijmenga, Karen M Eny, Helen L Lutgers, John Maynard, Barbara E K Klein, Kristine E Lee, Gil Atzmon, Vincent M Monnier, Jana V van Vliet-Ostaptchouk, Reindert Graaff, Pim van der Harst, Harold Snieder, Melanie M van der Klauw, David R Sell, S Mohsen Hosseini, Patricia A Cleary, Barbara H Braffett, Trevor J Orchard, Timothy J Lyons, Kerri Howard, Ronald Klein, Jill P Crandall, Nir Barzilai, Sofiya Milman, Danny Ben-Avraham, LifeLines Cohort Study Group, DCCT/EDIC Research Group, Bruce H R Wolffenbuttel, Andrew D Paterson, Behrooz Z Alizadeh, Rudolf A de Boer, H Marike Boezen, Marcel Bruinenberg, Lude Franke, Pim van der Harst, Hans L Hillege, Melanie M van der Klauw, Gerjan Navis, Johan Ormel, Dirkje S Postma, Judith G M Rosmalen, Joris P Slaets, Harold Snieder, Ronald P Stolk, Bruce H R Wolffenbuttel, Cisca Wijmenga

Abstract

Aims/hypothesis: Skin fluorescence (SF) is a non-invasive marker of AGEs and is associated with the long-term complications of diabetes. SF increases with age and is also greater among individuals with diabetes. A familial correlation of SF suggests that genetics may play a role. We therefore performed parallel genome-wide association studies of SF in two cohorts.

Methods: Cohort 1 included 1,082 participants, 35-67 years of age with type 1 diabetes. Cohort 2 included 8,721 participants without diabetes, aged 18-90 years.

Results: rs1495741 was significantly associated with SF in Cohort 1 (p < 6 × 10(-10)), which is known to tag the NAT2 acetylator phenotype. The fast acetylator genotype was associated with lower SF, explaining up to 15% of the variance. In Cohort 2, the top signal associated with SF (p = 8.3 × 10(-42)) was rs4921914, also in NAT2, 440 bases upstream of rs1495741 (linkage disequilibrium r (2) = 1.0 for rs4921914 with rs1495741). We replicated these results in two additional cohorts, one with and one without type 1 diabetes. Finally, to understand which compounds are contributing to the NAT2-SF signal, we examined 11 compounds assayed from skin biopsies (n = 198): the fast acetylator genotype was associated with lower levels of the AGEs hydroimidazolones of glyoxal (p = 0.017).

Conclusions/interpretation: We identified a robust association between NAT2 and SF in people with and without diabetes. Our findings provide proof of principle that genetic variation contributes to interindividual SF and that NAT2 acetylation status plays a major role.

Trial registration: ClinicalTrials.gov NCT00360815 NCT00360893.

Figures

Fig. 1
Fig. 1
(a) Regional plot of a 300 kb region surrounding rs1495741 (p = 1.7 × 10−12) showing genotyped and imputed SNPs plotted with their (–log10) p values from the DCCT/EDIC cohort (M3) on the left y-axis and their genomic position (NCBI Build 35; www.ncbi.nlm.nih.gov/mapview/stats/BuildStats.cgi?taxid=9606&build=3) on the x-axis. Gene annotations (Genome Browser; http://genome.ucsc.edu/) are shown above the x-axis. Estimated recombination rates (HapMap II release 22; http://hapmap.ncbi.nlm.nih.gov/) are plotted on the right y-axis. For genotyped SNPs, the LD values shown were calculated based on pairwise r2 values for rs1495741 from the DCCT/EDIC cohort, and for imputed SNPs are based on r2 values from HapMap phase II (Nov08, release 24, on NCBI B36 assembly, dbSNP b126). The blue diamond indicates rs1495741 and the SNPs are coloured based on their LD with it (red, r2 ≥ 0.8; orange, 0.5 ≤ r2 < 0.8; yellow, 0.2 ≤ r2 < 0.5; white, r2 < 0.2); (www.broadinstitute.org/diabetes/scandinavs/figures.html). (b) Beeswarm plot showing level of unadjusted loge SIF1 for each participant in the DCCT/EDIC cohort according to their rs1495741 genotype, with the mean ± SD shown above the x-axis

References

    1. Dyer DG, Dunn JA, Thorpe SR, et al. Accumulation of Maillard reaction products in skin collagen in diabetes and aging. J Clin Invest. 1993;91:2463–2469. doi: 10.1172/JCI116481.
    1. Brownlee M, Cerami A, Vlassara H. Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications. N Engl J Med. 1988;318:1315–1321. doi: 10.1056/NEJM198805193182007.
    1. Leslie RD, Beyan H, Sawtell P, Boehm BO, Spector TD, Snieder H. Level of an advanced glycated end product is genetically determined: a study of normal twins. Diabetes. 2003;52:2441–2444. doi: 10.2337/diabetes.52.9.2441.
    1. Verzijl N, DeGroot J, Thorpe SR, et al. Effect of collagen turnover on the accumulation of advanced glycation end products. J Biol Chem. 2000;275:39027–39031. doi: 10.1074/jbc.M006700200.
    1. Monnier VM, Bautista O, Kenny D, et al. Skin collagen glycation, glycoxidation, and crosslinking are lower in subjects with long-term intensive versus conventional therapy of type 1 diabetes: relevance of glycated collagen products versus HbA1c as markers of diabetic complications. DCCT Skin Collagen Ancillary Study Group, Diabetes Control and Complications Trial. Diabetes. 1999;48:870–880. doi: 10.2337/diabetes.48.4.870.
    1. Monnier VM, Sell DR, Strauch C, et al. The association between skin collagen glucosepane and past progression of microvascular and neuropathic complications in type 1 diabetes. J Diabetes Complications. 2013;27:141–149. doi: 10.1016/j.jdiacomp.2012.10.004.
    1. Genuth S, Sun W, Cleary P, et al. Glycation and carboxymethyllysine levels in skin collagen predict the risk of future 10-year progression of diabetic retinopathy and nephropathy in the Diabetes Control and Complications Trial and Epidemiology of Diabetes Interventions and Complications participants with type 1 diabetes. Diabetes. 2005;54:3103–3111. doi: 10.2337/diabetes.54.11.3103.
    1. Meerwaldt R, Graaff R, Oomen PH, et al. Simple non-invasive assessment of advanced glycation endproduct accumulation. Diabetologia. 2004;47:1324–1330. doi: 10.1007/s00125-004-1451-2.
    1. Hull E, Ediger M, Unione A, Deemer E, Stroman M, Baynes J. Noninvasive, optical detection of diabetes: model studies with porcine skin. Opt Express. 2004;12:4496–4510. doi: 10.1364/OPEX.12.004496.
    1. Richards-Kortum R, Sevick-Muraca E. Quantitative optical spectroscopy for tissue diagnosis. Annu Rev Phys Chem. 1996;47:555–606. doi: 10.1146/annurev.physchem.47.1.555.
    1. Meerwaldt R, Lutgers HL, Links TP, et al. Skin autofluorescence is a strong predictor of cardiac mortality in diabetes. Diabetes Care. 2007;30:107–112. doi: 10.2337/dc06-1391.
    1. Cleary PA, Braffett BH, Orchard T, et al. Clinical and technical factors associated with skin intrinsic fluorescence in subjects with type 1 diabetes from the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Study. Diabetes Technol Ther. 2013;15:466–474. doi: 10.1089/dia.2012.0316.
    1. Koetsier M, Lutgers HL, de Jonge C, Links TP, Smit AJ, Graaff R. Reference values of skin autofluorescence. Diabetes Technol Ther. 2010;12:399–403. doi: 10.1089/dia.2009.0113.
    1. Maynard JD, Rohrscheib M, Way JF, Nguyen CM, Ediger MN. Noninvasive type 2 diabetes screening: superior sensitivity to fasting plasma glucose and A1C. Diabetes Care. 2007;30:1120–1124. doi: 10.2337/dc06-2377.
    1. Orchard TJ, Lyons TJ, Cleary PA, et al. The association of skin-intrinsic fluorescence with type 1 diabetes complications in the DCCT/EDIC Study. Diabetes Care. 2013;36:3146–3153. doi: 10.2337/dc12-2661.
    1. Conway BN, Aroda VR, Maynard JD, et al. Skin intrinsic fluorescence correlates with autonomic and distal symmetrical polyneuropathy in individuals with type 1 diabetes. Diabetes Care. 2011;34:1000–1005. doi: 10.2337/dc10-1791.
    1. Conway BN, Aroda VR, Maynard JD, et al. Skin intrinsic fluorescence is associated with coronary artery disease in individuals with long duration of type 1 diabetes. Diabetes Care. 2012;35:2331–2336. doi: 10.2337/dc12-0053.
    1. Conway B, Edmundowicz D, Matter N, Maynard J, Orchard T. Skin fluorescence correlates strongly with coronary artery calcification severity in type 1 diabetes. Diabetes Technol Ther. 2010;12:339–345. doi: 10.1089/dia.2009.0152.
    1. Lutgers HL, Gerrits EG, Graaff R, et al. Skin autofluorescence provides additional information to the UK Prospective Diabetes Study (UKPDS) risk score for the estimation of cardiovascular prognosis in type 2 diabetes mellitus. Diabetologia. 2009;52:789–797. doi: 10.1007/s00125-009-1308-9.
    1. Barat P, Cammas B, Lacoste A, et al. Advanced glycation end products in children with type 1 diabetes: family matters? Diabetes Care. 2012;35:e1. doi: 10.2337/dc11-1398.
    1. Kessel L, Hougaard JL, Sander B, Kyvik KO, Sorensen TI, Larsen M. Lens ageing as an indicator of tissue damage associated with smoking and non-enzymatic glycation—a twin study. Diabetologia. 2002;45:1457–1462. doi: 10.1007/s00125-002-0925-3.
    1. Stolk RP, Rosmalen JG, Postma DS, et al. Universal risk factors for multifactorial diseases: LifeLines: a three-generation population-based study. Eur J Epidemiol. 2008;23:67–74. doi: 10.1007/s10654-007-9204-4.
    1. Klein R, Knudtson MD, Lee KE, Gangnon R, Klein BE. The Wisconsin Epidemiologic Study of Diabetic Retinopathy XXIII: the twenty-five-year incidence of macular edema in persons with type 1 diabetes. Ophthalmology. 2009;116:497–503. doi: 10.1016/j.ophtha.2008.10.016.
    1. Han J, Ryu S, Moskowitz DM, et al. Discovery of novel non-synonymous SNP variants in 988 candidate genes from 6 centenarians by target capture and next-generation sequencing. Mech Ageing Dev. 2013;134:478–485. doi: 10.1016/j.mad.2013.01.005.
    1. Epidemiology of Diabetes Interventions and Complications (EDIC) Research Group (1999) Design, implementation, and preliminary results of a long-term follow-up of the Diabetes Control and Complications Trial cohort. Diabetes Care 22:99–111
    1. Koetsier M, Nur E, Chunmao H, et al. Skin color independent assessment of aging using skin autofluorescence. Opt Express. 2010;18:14416–14429. doi: 10.1364/OE.18.014416.
    1. Paterson AD, Waggott D, Boright AP, et al. A genome-wide association study identifies a novel major locus for glycemic control in type 1 diabetes, as measured by both A1C and glucose. Diabetes. 2010;59:539–549. doi: 10.2337/db09-0653.
    1. Patterson N, Price AL, Reich D. Population structure and eigenanalysis. PLoS Genet. 2006;2:e190. doi: 10.1371/journal.pgen.0020190.
    1. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet. 2006;38:904–909. doi: 10.1038/ng1847.
    1. Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics. 2010;26:2190–2191. doi: 10.1093/bioinformatics/btq340.
    1. Tobin MD, Sheehan NA, Scurrah KJ, Burton PR. Adjusting for treatment effects in studies of quantitative traits: antihypertensive therapy and systolic blood pressure. Stat Med. 2005;24:2911–2935. doi: 10.1002/sim.2165.
    1. Purcell S, Neale B, Todd-Brown K, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–575. doi: 10.1086/519795.
    1. Garcia-Closas M, Hein DW, Silverman D, et al. A single nucleotide polymorphism tags variation in the arylamine N-acetyltransferase 2 phenotype in populations of European background. Pharmacogenet Genomics. 2011;21:231–236.
    1. He YJ, Shapero MH, McLeod HL. Novel tagging SNP rs1495741 and 2-SNPs (rs1041983 and rs1801280) yield a high prediction of the NAT2 genotype in HapMap samples. Pharmacogenet Genomics. 2012;22:322–324. doi: 10.1097/FPC.0b013e3283510a51.
    1. Selinski S, Blaszkewicz M, Lehmann ML, et al. Genotyping NAT2 with only two SNPs (rs1041983 and rs1801280) outperforms the tagging SNP rs1495741 and is equivalent to the conventional 7-SNP NAT2 genotype. Pharmacogenet Genomics. 2011;21:673–678. doi: 10.1097/FPC.0b013e3283493a23.
    1. Teslovich TM, Musunuru K, Smith AV, et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature. 2010;466:707–713. doi: 10.1038/nature09270.
    1. Soranzo N, Sanna S, Wheeler E, et al. Common variants at 10 genomic loci influence hemoglobin A(1)(C) levels via glycemic and nonglycemic pathways. Diabetes. 2010;59:3229–3239. doi: 10.2337/db10-0502.
    1. Manning AK, Hivert MF, Scott RA, et al. A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance. Nat Genet. 2012;44:659–669. doi: 10.1038/ng.2274.
    1. Chabroux S, Canoui-Poitrine F, Reffet S, et al. Advanced glycation end products assessed by skin autofluorescence in type 1 diabetics are associated with nephropathy, but not retinopathy. Diabetes Metab. 2010;36:152–157. doi: 10.1016/j.diabet.2009.11.003.
    1. Thornalley PJ. Protein and nucleotide damage by glyoxal and methylglyoxal in physiological systems—role in ageing and disease. Drug Metabol Drug Interact. 2008;23:125–150. doi: 10.1515/DMDI.2008.23.1-2.125.
    1. Tessier F, Obrenovich M, Monnier VM. Structure and mechanism of formation of human lens fluorophore LM-1. Relationship to vesperlysine A and the advanced Maillard reaction in aging, diabetes, and cataractogenesis. J Biol Chem. 1999;274:20796–20804. doi: 10.1074/jbc.274.30.20796.
    1. Beisswenger PJ, Howell S, Mackenzie T, Corstjens H, Muizzuddin N, Matsui MS. Two fluorescent wavelengths, 440(ex)/520(em) nm and 370(ex)/440(em) nm, reflect advanced glycation and oxidation end products in human skin without diabetes. Diabetes Technol Ther. 2012;14:285–292. doi: 10.1089/dia.2011.0108.
    1. Ramanujam N. Fluorescence spectroscopy in vivo. In: Meyers RA, editor. Encyclopedia of analytical chemistry. Chichester: Wiley; 2000. pp. 20–56.
    1. Sabbagh A, Marin J, Veyssiere C, et al. Rapid birth-and-death evolution of the xenobiotic metabolizing NAT gene family in vertebrates with evidence of adaptive selection. BMC Evol Biol. 2013;13:62. doi: 10.1186/1471-2148-13-62.
    1. Rothman N, Garcia-Closas M, Chatterjee N, et al. A multi-stage genome-wide association study of bladder cancer identifies multiple susceptibility loci. Nat Genet. 2010;42:978–984. doi: 10.1038/ng.687.
    1. Suhre K, Shin SY, Petersen AK, et al. Human metabolic individuality in biomedical and pharmaceutical research. Nature. 2011;477:54–60. doi: 10.1038/nature10354.
    1. Suhre K, Wallaschofski H, Raffler J, et al. A genome-wide association study of metabolic traits in human urine. Nat Genet. 2011;43:565–569. doi: 10.1038/ng.837.
    1. Varani J, Dame MK, Rittie L, et al. Decreased collagen production in chronologically aged skin: roles of age-dependent alteration in fibroblast function and defective mechanical stimulation. Am J Pathol. 2006;168:1861–1868. doi: 10.2353/ajpath.2006.051302.
    1. Bhaiya P, Roychowdhury S, Vyas PM, Doll MA, Hein DW, Svensson CK. Bioactivation, protein haptenation, and toxicity of sulfamethoxazole and dapsone in normal human dermal fibroblasts. Toxicol Appl Pharmacol. 2006;215:158–167. doi: 10.1016/j.taap.2006.02.006.
    1. Hickman D, Pope J, Patil SD, et al. Expression of arylamine N-acetyltransferase in human intestine. Gut. 1998;42:402–409. doi: 10.1136/gut.42.3.402.

Source: PubMed

3
Prenumerera