Task-dependent modulation of propriospinal inputs to human shoulder

Lynley V Roberts, Cathy M Stinear, Gwyn N Lewis, Winston D Byblow, Lynley V Roberts, Cathy M Stinear, Gwyn N Lewis, Winston D Byblow

Abstract

In the human upper limb a proportion of the descending corticospinal command may be relayed through cervical propriospinal premotoneurons. This may serve to coordinate movements involving multiple joints of the arm, such as reaching. The present study was conducted to determine whether a shoulder stabilizing muscle, infraspinatus (INF), is functionally integrated into the putative cervical propriospinal network, and whether there is task-dependent modulation of the network. Fourteen healthy adults participated in this study. Responses in the right INF were evoked by transcranial magnetic stimulation over the motor cortex and compared with responses conditioned by ulnar nerve stimulation. Interstimulus intervals were chosen to summate inputs at the level of the premotoneurons. Participants performed a forearm and shoulder muscle cocontraction task or a grip-lift task that also coactivated forearm and shoulder muscles. During the cocontraction task, INF motor-evoked potentials were significantly facilitated by ulnar nerve stimulation at low intensities and suppressed at higher intensities. Only facilitation reached significance during the grip-lift task. We have shown for the first time that propriospinal pathways may connect the hand to the rotator cuff of the shoulder. The modulation of facilitation/suppression during the grip-lift task suggests that inhibition of propriospinal premotoneurons is down-regulated in a task-dependent manner to increase the gain in the feedback reflex loop from forearm and hand muscles as required.

Source: PubMed

3
Prenumerera