Reliability of Metal 3D Printing with Respect to the Marginal Fit of Fixed Dental Prostheses: A Systematic Review and Meta-Analysis

Soohyun Bae, Min-Ho Hong, Hyunwoo Lee, Cheong-Hee Lee, Mihee Hong, Jaesik Lee, Du-Hyeong Lee, Soohyun Bae, Min-Ho Hong, Hyunwoo Lee, Cheong-Hee Lee, Mihee Hong, Jaesik Lee, Du-Hyeong Lee

Abstract

Three-dimensional (3D) printing technologies have been widely used to manufacture crowns and frameworks for fixed dental prostheses. This systematic review and meta-analysis aimed to assess the reliability of the marginal fit of 3D-printed cobalt-chromium-based fixed dental prostheses in comparison to conventional casting methods. Articles published until 25 June 2020, reporting the marginal fit of fixed prostheses fabricated with metal 3D printing, were searched using electronic literature databases. After the screening and quality assessment, 21 eligible peer-reviewed articles were selected. Meta-analysis revealed that the marginal gap of the prostheses manufactured using 3D printing was significantly smaller compared to that manufactured using casting methods (standard mean difference (95% CI): -0.92 (-1.45, -0.38); Z = -3.37; p = 0.0008). The estimated difference between the single and multi-unit types did not differ significantly (p = 0.3573). In the subgroup analysis for the measurement methods, the tendency of marginal discrepancy between the 3D printing and casting groups was significantly different between articles that used direct observation and those that used the silicone replica technique (p < 0.001). Metal 3D printing technologies appear reliable as an alternative to casting methods in terms of the fit of the fixed dental prostheses. In order to analyze the factors influencing manufacturing and confirm the results of this review, further controlled laboratory and clinical studies are required.

Keywords: 3D printing; fixed dental prosthesis; marginal fit; meta-analysis; metal; reliability; systematic review.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
PRISMA flow diagram of the literature search.
Figure 2
Figure 2
Quality assessment results according to the Quality Assessment Tool for Diagnostic Accuracy Studies-2 (QUADAS-2).
Figure 3
Figure 3
Global meta-analysis on the marginal gap of prostheses fabricated with 3D printing versus casting methods.
Figure 4
Figure 4
Subgroup meta-analysis for the different prosthesis types on the marginal gap between 3D printing and casting methods.
Figure 5
Figure 5
Subgroup meta-analysis for the different measurement methods on the marginal gap between 3D printing and casting methods.
Figure 6
Figure 6
Funnel plot showing publication bias assessment.

References

    1. Korner M.E.H., Lambán M.P., Albajez J.A., Santolaria J., Ng Corrales L.D.C., Royo J. Systematic Literature Review: Integration of Additive Manufacturing and Industry 4.0. Metals. 2020;10:1061. doi: 10.3390/met10081061.
    1. Akhila A.S., Nandakishore B., Miriam M., Anil S.K., Abhinav M., Fares A. Rapid prototyping: An innovative technique in prosthodontics. Int. J. Prev. Clin. Dent. Res. 2019;6:46. doi: 10.4103/INPC.INPC_16_19.
    1. Fan D., Li Y., Wang X., Zhu T., Wang Q., Cai H., Li W., Tian Y., Liu Z. Progressive 3D Printing Technology and Its Application in Medical Materials. Front. Pharmacol. 2020;11:122. doi: 10.3389/fphar.2020.00122.
    1. Wang H., Lim J.Y. Metal-ceramic bond strength of a cobalt chromium alloy for dental prosthetic restorations with a porous structure using metal 3D printing. Comput. Biol. Med. 2019;112:103364. doi: 10.1016/j.compbiomed.2019.103364.
    1. Razavykia A., Brusa E., Delprete C., Yavari R. An Overview of Additive Manufacturing Technologies—A Review to Technical Synthesis in Numerical Study of Selective Laser Melting. Materials. 2020;13:3895. doi: 10.3390/ma13173895.
    1. Revilla-León M., Meyer M.J., Özcan M. Metal additive manufacturing technologies: Literature review of current status and prosthodontic applications. Int. J. Comput. Dent. 2019;22:55–67.
    1. Alharbi N., Wismeijer D., Osman R.B. Additive Manufacturing Techniques in Prosthodontics: Where Do We Currently Stand? A Critical Review. Int. J. Prosthodont. 2017;30:474–484. doi: 10.11607/ijp.5079.
    1. Revilla-León M., Sadeghpour M., Özcan M. A Review of the Applications of Additive Manufacturing Technologies Used to Fabricate Metals in Implant Dentistry. J. Prosthodont. 2020;29:579–593. doi: 10.1111/jopr.13212.
    1. Konieczny B., Szczesio-Wlodarczyk A., Sokolowski J., Bociong K. Challenges of Co–Cr Alloy Additive Manufacturing Methods in Dentistry—The Current State of Knowledge (Systematic Review) Materials. 2020;13:3524. doi: 10.3390/ma13163524.
    1. Koutsoukis T., Zinelis S., Eliades G., Al-Wazzan K., Al Rifaiy M., Al Jabbari Y.S. Selective Laser Melting Technique of Co-Cr Dental Alloys: A Review of Structure and Properties and Comparative Analysis with Other Available Techniques. J. Prosthodont. 2015;24:303–312. doi: 10.1111/jopr.12268.
    1. Wang J.-H., Ren J., Liu W., Wu X.-Y., Gao M.-X., Bai P. Effect of Selective Laser Melting Process Parameters on Microstructure and Properties of Co-Cr Alloy. Materials. 2018;11:1546. doi: 10.3390/ma11091546.
    1. Takaichi A., Suyalatu, Nakamoto T., Joko N., Nomura N., Tsutsumi Y., Migita S., Doi H., Kurosu S., Chiba A., et al. Microstructures and mechanical properties of Co–29Cr–6Mo alloy fabricated by selective laser melting process for dental applications. J. Mech. Behav. Biomed. Mater. 2013;21:67–76. doi: 10.1016/j.jmbbm.2013.01.021.
    1. Svanborg P., Hjalmarsson L. A systematic review on the accuracy of manufacturing techniques for cobalt chromium fixed dental prostheses. Biomater. Investig. Dent. 2020;7:31–40. doi: 10.1080/26415275.2020.1714445.
    1. Nascimento C.D., Ikeda L.N., Pita M.S., E Silva R.C.P., Pedrazzi V., de Albuquerque Junior R.F., Ribeiro R.F. Marginal fit and microbial leakage along the implant-abutment interface of fixed partial prostheses: An in vitro analysis using Checkerboard DNA-DNA hybridization. J. Prosthet. Dent. 2015;114:831–838. doi: 10.1016/j.prosdent.2015.05.009.
    1. Rossetti P.H.O., Valle A.L.D., De Carvalho R.M., De Goes M.F., Pegoraro L.F. Correlation between margin fit and microleakage in complete crowns cemented with three luting agents. J. Appl. Oral Sci. 2008;16:64–69. doi: 10.1590/S1678-77572008000100013.
    1. Moher D., Liberati A., Tetzlaff J., Altman D.G., The PRISMA Group Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009;6:e1000097. doi: 10.1371/journal.pmed.1000097.
    1. Phillips B., X H., J L., D D.-F. Faculty Opinions recommendation of Evaluation of PICO as a knowledge representation for clinical questions. Fac. Opin. Post-Publ. Peer Rev. Biomed. Lit. 2007;2006:359–363. doi: 10.3410/f.1070901.523853.
    1. Whiting P.F., Rutjes A.W., Westwood M.E., Mallett S., Deeks J.J., Reitsma J.B., Leeflang M.M., Sterne J.A., Bossuyt P.M.M. QUADAS-2: A Revised Tool for the Quality Assessment of Diagnostic Accuracy Studies. Ann. Intern. Med. 2011;155:529–536. doi: 10.7326/0003-4819-155-8-201110180-00009.
    1. McGuinness L.A., Higgins J.P.T. Risk-of-bias VISualization (robvis): An R package and Shiny web app for visualizing risk-of-bias assessments. Res. Synth. Methods. 2020 doi: 10.1002/jrsm.1411.
    1. Borenstein M., Hedges L.V., Higgins J.P.T., Rothstein H.R. Introduction to Meta-Analysis. Wiley; Hoboken, NJ, USA: 2009. pp. 311–319.
    1. Yildirim B., Paken G. Evaluation of the Marginal and Internal Fit of Implant-Supported Metal Copings Fabricated with 3 Different Techniques: An In Vitro Study. J. Prosthodont. 2019;28:315–320. doi: 10.1111/jopr.13022.
    1. Presotto A.G.C., Barão V.A.R., Bhering C.L.B., Mesquita M.F. Dimensional precision of implant-supported frameworks fabricated by 3D printing. J. Prosthet. Dent. 2019;122:38–45. doi: 10.1016/j.prosdent.2019.01.019.
    1. Hong M.-H., Min B.K., Lee D.-H., Kwon T.-Y. Marginal fit of metal-ceramic crowns fabricated by using a casting and two selective laser melting processes before and after ceramic firing. J. Prosthet. Dent. 2019;122:475–481. doi: 10.1016/j.prosdent.2019.03.002.
    1. Chang H.-S., Peng Y.-T., Hung W.-L., Hsu M.-L. Evaluation of marginal adaptation of Co-Cr-Mo metal crowns fabricated by traditional method and computer-aided technologies. J. Dent. Sci. 2019;14:288–294. doi: 10.1016/j.jds.2018.11.006.
    1. James A.E., Umamaheswari B., Lakshmi C.B.S. Comparative Evaluation of Marginal Accuracy of Metal Copings Fabricated using Direct Metal Laser Sintering, Computer-Aided Milling, Ringless Casting, and Traditional Casting Techniques: An In vitro Study. Contemp. Clin. Dent. 2018;9:421–426. doi: 10.4103/ccd.ccd_191_18.
    1. Yadav A., Arora A., Upadhyaya V., Jain P., Verma M. Comparison of marginal and internal adaptation of copings fabricated from three different fabrication techniques: An in vitro study. J. Indian Prosthodont. Soc. 2018;18:102. doi: 10.4103/jips.jips_327_17.
    1. Ullattuthodi S., Cherian K.P., Anandkumar R., Nambiar M.S. Marginal and internal fit of cobalt-chromium copings fabricated using the conventional and the direct metal laser sintering techniques: A comparative in vitro study. J. Indian Prosthodont. Soc. 2017;17:373–380. doi: 10.4103/jips.jips_88_17.
    1. Lövgren N., Roxner R., Klemendz S., Larsson C. Effect of production method on surface roughness, marginal and internal fit, and retention of cobalt-chromium single crowns. J. Prosthet. Dent. 2017;118:95–101. doi: 10.1016/j.prosdent.2016.09.025.
    1. Kaleli N., Saraç D. Influence of porcelain firing and cementation on the marginal adaptation of metal-ceramic restorations prepared by different methods. J. Prosthet. Dent. 2016;117:656–661. doi: 10.1016/j.prosdent.2016.08.016.
    1. Kocaağaoğlu H., Kılınç H.I., Albayrak H., Kara M. In vitro evaluation of marginal, axial, and occlusal discrepancies in metal ceramic restorations produced with new technologies. J. Prosthet. Dent. 2016;116:368–374. doi: 10.1016/j.prosdent.2016.03.013.
    1. Gunsoy S., Ulusoy M. Evaluation of marginal/internal fit of chrome-cobalt crowns: Direct laser metal sintering versus computer-aided design and computer-aided manufacturing. Niger. J. Clin. Pr. 2016;19:636–644. doi: 10.4103/1119-3077.188699.
    1. Ates S.M., Duymus Z.Y. Influence of Tooth Preparation Design on Fitting Accuracy of CAD-CAM Based Restorations. J. Esthet. Restor. Dent. 2016;28:238–246. doi: 10.1111/jerd.12208.
    1. Zeng L., Zhang Y., Liu Z., Wei B. Effects of repeated firing on the marginal accuracy of Co-Cr copings fabricated by selective laser melting. J. Prosthet. Dent. 2015;113:135–139. doi: 10.1016/j.prosdent.2014.09.004.
    1. Pompa G., Di Carlo S., De Angelis F., Cristalli M.P., Annibali S. Comparison of Conventional Methods and Laser-Assisted Rapid Prototyping for Manufacturing Fixed Dental Prostheses: An In Vitro Study. BioMed Res. Int. 2015;2015:1–7. doi: 10.1155/2015/318097.
    1. Park J.-K., Lee W.-S., Kim H.-Y., Kim W.-C., Kim J.-H. Accuracy evaluation of metal copings fabricated by computer-aided milling and direct metal laser sintering systems. J. Adv. Prosthodont. 2015;7:122–128. doi: 10.4047/jap.2015.7.2.122.
    1. Huang Z., Zhang L., Zhu J., Zhao Y., Zhang X. Clinical Marginal and Internal Fit of Crowns Fabricated Using Different CAD/CAM Technologies. J. Prosthodont. 2014;24:291–295. doi: 10.1111/jopr.12209.
    1. Tamac E., Toksavul S., Toman M. Clinical marginal and internal adaptation of CAD/CAM milling, laser sintering, and cast metal ceramic crowns. J. Prosthet. Dent. 2014;112:909–913. doi: 10.1016/j.prosdent.2013.12.020.
    1. Kim K.-B., Kim W.-C., Kim H.-Y., Kim J.-H. An evaluation of marginal fit of three-unit fixed dental prostheses fabricated by direct metal laser sintering system. Dent. Mater. 2013;29:e91–e96. doi: 10.1016/j.dental.2013.04.007.
    1. Kim K.-B., Kim J.-H., Kim W.-C., Kim H.-Y., Kim J.-H. Evaluation of the marginal and internal gap of metal-ceramic crown fabricated with a selective laser sintering technology: Two- and three-dimensional replica techniques. J. Adv. Prosthodont. 2013;5:179–186. doi: 10.4047/jap.2013.5.2.179.
    1. Castillo-Oyagüe R., Turrión A.S., Lozano J.F.L., Albaladejo A., Torres-Lagares D., Montero J., Suárez-García M.-J. Vertical misfit of laser-sintered and vacuum-cast implant-supported crown copings luted with definitive and temporary luting agents. Med. Oral Patol. Oral Cir. Bucal. 2012;17:e610–e617. doi: 10.4317/medoral.17997.
    1. Örtorp A., Jönsson D., Mouhsen A., Von Steyern P.V. The fit of cobalt–chromium three-unit fixed dental prostheses fabricated with four different techniques: A comparative in vitro study. Dent. Mater. 2011;27:356–363. doi: 10.1016/j.dental.2010.11.015.
    1. Nawafleh N.A., Mack F., Evans J., Mackay J., Hatamleh M.M. Accuracy and Reliability of Methods to Measure Marginal Adaptation of Crowns and FDPs: A Literature Review. J. Prosthodont. 2013;22:419–428. doi: 10.1111/jopr.12006.
    1. Lee D.-H. Digital approach to assessing the 3-dimensional misfit of fixed dental prostheses. J. Prosthet. Dent. 2016;116:836–839. doi: 10.1016/j.prosdent.2016.05.012.
    1. Schlenz M.A., Vogler J.A.H., Schmidt A., Rehmann P., Wöstmann B. Chairside measurement of the marginal and internal fit of crowns: A new intraoral scan–based approach. Clin. Oral Investig. 2019;24:2459–2468. doi: 10.1007/s00784-019-03108-3.
    1. Mai H.-N., Lee K.E., Ha J.-H., Lee D.-H. Effects of image and education on the precision of the measurement method for evaluating prosthesis misfit. J. Prosthet. Dent. 2018;119:600–605. doi: 10.1016/j.prosdent.2017.05.022.
    1. Barrios-Muriel J., Romero-Sánchez F., Alonso F.J., Salgado D.R. Advances in Orthotic and Prosthetic Manufacturing: A Technology Review. Materials. 2020;13:295. doi: 10.3390/ma13020295.
    1. Oropallo W., Piegl L.A. Ten challenges in 3D printing. Eng. Comput. 2015;32:135–148. doi: 10.1007/s00366-015-0407-0.
    1. Huang Z., Zhang X., Zhu J., Zhang X. Clinical marginal and internal fit of metal ceramic crowns fabricated with a selective laser melting technology. J. Prosthet. Dent. 2015;113:623–627. doi: 10.1016/j.prosdent.2014.10.012.
    1. Franz H., Plöchl L., Schimansky F.-P. Recent advances of titanium alloy powder production by ceramic-free inert gas atomization; Proceedings of the 24th Annual International Titanium Associaction Conference Titatnium 2008; Las Vesgas, NV, USA. 21–24 September 2008.
    1. Gu D., Meiners W., Wissenbach K., Poprawe R. Laser additive manufacturing of metallic components: Materials, processes and mechanisms. Int. Mater. Rev. 2012;57:133–164. doi: 10.1179/1743280411Y.0000000014.
    1. Murr L.E., Gaytan S.M., Ramirez D.A., Martinez E., Hernandez J., Amato K.N., Shindo P.W., Medina F.R., Wicker R.B. Metal Fabrication by Additive Manufacturing Using Laser and Electron Beam Melting Technologies. J. Mater. Sci. Technol. 2012;28:1–14. doi: 10.1016/S1005-0302(12)60016-4.
    1. Gusarov A.V., Yadroitsev I., Bertrand P., Smurov I. Model of Radiation and Heat Transfer in Laser-Powder Interaction Zone at Selective Laser Melting. J. Heat Transf. 2009;131:072101. doi: 10.1115/1.3109245.
    1. Heeling T., Cloots M., Wegener K. Melt pool simulation for the evaluation of process parameters in selective laser melting. Addit. Manuf. 2017;14:116–125. doi: 10.1016/j.addma.2017.02.003.
    1. Meier C., Penny R.W., Zou Y., Gibbs J.S., Hart A.J. Thermophysical Phenomena in Metal Additive Manufacturing by Selective Laser Melting: Fundamentals, Modeling, Simulation, and Experimentation. Annu. Rev. Heat Transf. 2017;20:241–316. doi: 10.1615/AnnualRevHeatTransfer.2018019042.
    1. Mitteramskogler G., Gmeiner R., Felzmann R., Gruber S., Hofstetter C., Stampfl J., Ebert J., Wachter W., Laubersheimer J. Light curing strategies for lithography-based additive manufacturing of customized ceramics. Addit. Manuf. 2014:110–118. doi: 10.1016/j.addma.2014.08.003.
    1. Wilkes J., Hagedorn Y., Meiners W., Wissenbach K. Additive manufacturing of ZrO2-Al2O3ceramic components by selective laser melting. Rapid Prototyp. J. 2013;19:51–57. doi: 10.1108/13552541311292736.
    1. Candotto V., Gabrione F., Oberti L., Lento D., Severino M. The role of implant-abutment connection in preventing bacterial leakage: A review. J. Biol. Regul Homeost. Agents. 2019;33:129–134.

Source: PubMed

3
Prenumerera