Gum Arabic ( Acacia Senegal) Augmented Total Antioxidant Capacity and Reduced C-Reactive Protein among Haemodialysis Patients in Phase II Trial

Nour Elkhair Ali, Lamis AbdelGadir Kaddam, Suad Yousif Alkarib, Babikir Gabir Kaballo, Sami Ahmed Khalid, Abdalazim Higawee, Alaa AbdElhabib, Alaa AlaaAldeen, Aled O Phillips, Amal Mahmoud Saeed, Nour Elkhair Ali, Lamis AbdelGadir Kaddam, Suad Yousif Alkarib, Babikir Gabir Kaballo, Sami Ahmed Khalid, Abdalazim Higawee, Alaa AbdElhabib, Alaa AlaaAldeen, Aled O Phillips, Amal Mahmoud Saeed

Abstract

Background: Oxidative processes might increase in patients with end-stage renal disease (ESRD) according to the current literature. Oxidative stress (OS) is a risk factor of atherosclerosis and cardiovascular complications, which are major causes of mortality among ESRD patients. Haemodialysis (HD) is life-saving procedure, nevertheless it is an active chronic inflammatory status that could augment cardiovascular disease and increase mortality. Gum Arabic (GA) has been claimed to act as an antioxidant and anti-inflammatory agent in experimental studies and clinical trials. Therefore, we assumed GA supplementation among haemodialysis patients would reduce oxidative stress and consequently reduce the state of chronic inflammatory activation associated with haemodialysis.

Methods: Forty end-stage renal failure (ESRF) patients aged 18-80 years who were on regular haemodialysis in Arif Renal Center, Omdurman, Sudan, were recruited. All recruited patients met the inclusion criteria and signed informed consent prior to enrolment. The patients received 30 g/day of GA for 12 weeks. C-reactive protein (CRP) and complete blood count (CBC) were measured as baseline and monthly. Total antioxidant capacity (TAC) and oxidative stress marker malondialdehyde (MDA) levels were measured before and after GA intake. Ethical approval from the National Medicines and Poisons Board was obtained.

Results: Gum Arabic significantly augmented total antioxidant capacity level (P < 0.001) (95% CI, 0.408-0.625) and also attenuated oxidative marker MDA and C-reactive protein (P < 0.001).

Conclusions: GA has revealed potent antioxidative and anti-inflammatory properties in haemodialysis patients. Oral digestion of GA (30 g/day) decreased oxidative stress and inflammatory markers among haemodialysis patients. Trial registration. ClinicalTrials.gov Identifier: NCT03214692, registered 11 July 2017 (prospective registration).

Conflict of interest statement

The authors declare no conflicts of interest.

Copyright © 2020 Nour Elkhair Ali et al.

Figures

Figure 1
Figure 1
Patients' recruitment and allocation in the clinical trial.
Figure 2
Figure 2
Causes of ESRD among study population. HTN, hypertension; DM, diabetes mellitus.
Figure 3
Figure 3
Effect of GA intake on TAC level (P < 0.001). Bars represent mean ± SD. Significant difference from baseline.
Figure 4
Figure 4
Effect of GA intake on MDA level (P < 0.001). Bars represent mean ± SD. Significant difference from baseline.
Figure 5
Figure 5
Effect of GA intake on CRP level (P < 0.001). Significant difference from baseline.

References

    1. Halliwell B., Cross C. E. Oxygen-derived species: their relation to human disease and environmental stress. Environmental Health Perspectives. 1994;102(10):5–12. doi: 10.2307/3432205.
    1. Urso M. L., Clarkson P. M. Oxidative stress, exercise, and antioxidant supplementation. Toxicology. 2003;189(1-2):41–54. doi: 10.1016/s0300-483x(03)00151-3.
    1. Schleicher E., Friess U. Oxidative stress, AGE, and atherosclerosis. Kidney International. 2007;72:S17–S26. doi: 10.1038/sj.ki.5002382.
    1. Agarwal R., Vasavada N., Sachs N. G., Chase S. Oxidative stress and renal injury with intravenous iron in patients with chronic kidney disease. Kidney International. 2004;65(6):2279–2289. doi: 10.1111/j.1523-1755.2004.00648.x.
    1. Liakopoulos V., Roumeliotis S., Gorny X., Dounousi E., Mertens P. R. Oxidative stress in hemodialysis patients: a review of the literature. Oxidative Medicine And Cellular Longevity. 2017;2017:22. doi: 10.1155/2017/3081856.3081856
    1. Gosmanova E. O., Le N.-A. Cardiovascular complications in CKD patients: role of oxidative stress. Cardiology Research and Practice. 2011;2011:8. doi: 10.4061/2011/156326.156326
    1. Jackson P., Loughrey C. M., Lightbody J. H., McNamee P. T., Young I. S. Effect of hemodialysis on total antioxidant capacity and serum antioxidants in patients with chronic renal failure. Clinical Chemistry. 1995;41(8):1135–1138. doi: 10.1093/clinchem/41.8.1135.
    1. Coombes J. S., Fassett R. G. Antioxidant therapy in hemodialysis patients: a systematic review. Kidney International. 2012;81(3):233–246. doi: 10.1038/ki.2011.341.
    1. Asadi S., Goodarzi M. T., Karimi J., Hashemnia M., Khodadadi I. Does curcumin or metformin attenuate oxidative stress and diabetic nephropathy in rats? Journal of Nephropathology. 2019;8(1)
    1. Phillips G. O., Ogasawara T., Ushida K. The regulatory and scientific approach to defining gum arabic (Acacia senegal and Acacia seyal) as a dietary fibre. Food Hydrocolloids. 2008;22(1):24–35. doi: 10.1016/j.foodhyd.2006.12.016.
    1. Adiotomre J., Eastwood M. A., Edwards C. A., Brydon W. G. Dietary fiber: in vitro methods that anticipate nutrition and metabolic activity in humans. The American Journal of Clinical Nutrition. 1990;52(1):128–134. doi: 10.1093/ajcn/52.1.128.
    1. Anderson D. M. W., Stoddart J. F. Studies on uronic acid materials. Carbohydrate Research. 1966;2(2):104–114. doi: 10.1016/s0008-6215(00)81474-3.
    1. Ross A. H. M., Eastwood M. A., Brydon W. G., Anderson J. R., Anderson D. M. W. A study of the effects of dietary gum arabic in humans. The American Journal of Clinical Nutrition. 1983;37(3):368–375. doi: 10.1093/ajcn/37.3.368.
    1. Calame W., Weseler A. R., Viebke C., Flynn C., Siemensma A. D. Gum arabic establishes prebiotic functionality in healthy human volunteers in a dose-dependent manner. British Journal of Nutrition. 2008;100(6):1269–1275. doi: 10.1017/s0007114508981447.
    1. Ali B. H., Ziada A., Blunden G. Biological effects of gum arabic: a review of some recent research. Food and Chemical Toxicology. 2009;47(1):1–8. doi: 10.1016/j.fct.2008.07.001.
    1. Johnson W. Final report of the safety assessment of Acacia catechu gum, Acacia concinna fruit extract, Acacia dealbata leaf extract, Acacia dealbata leaf wax, Acacia decurrens extract, Acacia farnesiana extract, Acacia farnesiana flower wax, Acacia farnesiana gum, Acacia senegal extract, Acacia senegal gum, and Acacia senegal gum extract. International Journal of Toxicology. 2005;24:75–118.
    1. Khalid S. A., Musa A. M., Saeed A. M., et al. Manipulating dietary fibre: gum arabic making friends of the colon and the kidney. Bioactive Carbohydrates and Dietary Fibre. 2014;3(2):71–76. doi: 10.1016/j.bcdf.2014.01.005.
    1. Ali B. H., Al-Husseni I., Beegam S., Al-Shukaili A., Nemmar A., Schierling S. Effect of gum Arabic on oxidative stress and inflammation in adenine-induced chronic renal failure in rats. PloS One. 2013;8(2) doi: 10.1371/journal.pone.0055242.
    1. Elamin S., Alkhawaja M. J., Bukhamsin A. Y., Idris M. A., Abdelrahman M. M., Abutaleb N. K. Gum Arabic reduces C-reactive protein in chronic kidney disease patients without affecting urea or indoxyl sulfate levels. International Journal of Nephrology. 2017;2017:6. doi: 10.1155/2017/9501470.9501470
    1. Babiker R., Merghani T. H., Elmusharaf K., Badi R. M., Lang F., Saeed A. M. Effects of gum Arabic ingestion on body mass index and body fat percentage in healthy adult females: two-arm randomized, placebo controlled, double-blind trial. Nutrition Journal. 2012;11(1):p. 111. doi: 10.1186/1475-2891-11-111.
    1. Nasir O., Wang K., Föller M., et al. Downregulation of angiogenin transcript levels and inhibition of colonic carcinoma by gum Arabic (Acacia senegal) Nutrition and Cancer. 2010;62(6):802–810. doi: 10.1080/01635581003605920.
    1. Ballal A., Bobbala D., Qadri S. M., et al. Anti-malarial effect of gum arabic. Malaria Journal. 2011;10(1):p. 139. doi: 10.1186/1475-2875-10-139.
    1. Xuan N. T., Shumilina E., Nasir O., Bobbala D., Götz F., Lang F. Stimulation of mouse dendritic cells by gum Arabic. Cellular Physiology and Biochemistry. 2010;25(6):641–648. doi: 10.1159/000315083.
    1. Al‐Majed A. A., Abd‐Allah A. R., Al‐Rikabi A. C., Al‐Shabanah O. A., Mostafa A. M. Effect of oral administration of Arabic gum on cisplatin‐induced nephrotoxicity in rats. Journal of Biochemical and Molecular Toxicology. 2003;17(3):146–153.
    1. Al-Yahya A. A., Al-Majed A. A., Gado A. M., et al. Acacia senegal gum exudate offers protection against cyclophosphamide-induced urinary bladder cytotoxicity. Oxidative Medicine and Cellular Longevity. 2009;2(4):207–213. doi: 10.4161/oxim.2.4.8878.
    1. Kaddam L., Fadl-Elmula I., Eisawi O. A., Abdelrazig H. A., Salih M. A., Lang F. Gum Arabic as novel anti-oxidant agent in sickle cell anemia, phase II trial. BMC Hematology. 2017;17(1):p. 4. doi: 10.1186/s12878-017-0075-y.
    1. Ali B. H., Beegam S., Al-Lawati I., Waly M. I., Al Za’abi M., Nemmar A. Comparative efficacy of three brands of gum acacia on adenine-induced chronic renal failure in rats. Physiological Research. 2013;62(62):47–56.
    1. Nasir O., Artunc F., Saeed A., et al. Effects of gum arabic (Acacia senegal) on water and electrolyte balance in healthy mice. Journal of Renal Nutrition. 2008;18(2):230–238. doi: 10.1053/j.jrn.2007.08.004.
    1. Matsumoto N., Riley S., Fraser D., et al. Butyrate modulates TGF-β1 generation and function: potential renal benefit for Acacia (sen) supergum (gum arabic)? Kidney International. 2006;69(2):257–265. doi: 10.1038/sj.ki.5000028.
    1. Al Mosawi A. J. The use of acacia gum in end stage renal failure. Journal of Tropical Pediatrics. 2007;53(5):362–365. doi: 10.1093/tropej/fmm033.
    1. Ali B. H., Al-Salam S., Al Za’abi M., et al. New model for adenine-induced chronic renal failure in mice, and the effect of gum acacia treatment thereon: comparison with rats. Journal of Pharmacological and Toxicological Methods. 2013;68(3):384–393. doi: 10.1016/j.vascn.2013.05.001.
    1. Ali A. A., Ali K. E., Fadlalla A. E., Khalid K. E. The effects of gum arabic oral treatment on the metabolic profile of chronic renal failure patients under regular haemodialysis in central Sudan. Natural Product Research. 2008;22(1):12–21. doi: 10.1080/14786410500463544.
    1. Ali B. H., Al-Salam S., Al Husseni I., et al. Effects of gum Arabic in rats with adenine-induced chronic renal failure. Experimental Biology and Medicine. 2010;235(3):373–382. doi: 10.1258/ebm.2009.009214.
    1. Rodrigues E., Mariutti L. R. B., Faria A. F., Mercadante A. Z. Microcapsules containing antioxidant molecules as scavengers of reactive oxygen and nitrogen species. Food Chemistry. 2012;134(2):704–711. doi: 10.1016/j.foodchem.2012.02.163.
    1. Ali B. H., Ziada A., Al Husseni I., Beegam S., Nemmar A. Motor and behavioral changes in rats with adenine-induced chronic renal failure: influence of acacia gum treatment. Experimental Biology and Medicine. 2011;236(1):107–112. doi: 10.1258/ebm.2010.010163.
    1. Kamal E., Kaddam L. A., Dahawi M., et al. Gum arabic fibers decreased inflammatory markers and disease severity score among rheumatoid arthritis patients, phase II Trial. International Journal of Rheumatology. 2018;2018:6. doi: 10.1155/2018/4197537.4197537
    1. Ushida K., Hatanaka H., Inoue R., Tsukahara T., Phillips G. O. Effect of long term ingestion of gum arabic on the adipose tissues of female mice. Food Hydrocolloids. 2011;25(5):1344–1349. doi: 10.1016/j.foodhyd.2010.12.010.
    1. Wapnir R. A., Sherry B., Codipilly C. N., Goodwin L. O., Vancurova I. Modulation of rat intestinal nuclear factor NF-κB by gum arabic. Digestive Diseases and Sciences. 2008;53(1):80–87. doi: 10.1007/s10620-007-9826-0.
    1. Himmelfarb J., Hakim R. M. Oxidative stress in uremia. Current Opinion in Nephrology and Hypertension. 2003;12(6):593–598. doi: 10.1097/00041552-200311000-00004.
    1. Koracevic D., Koracevic G., Djordjevic V., Andrejevic S., Cosic V. Method for the measurement of antioxidant activity in human fluids. Journal of Clinical Pathology. 2001;54(5):356–361. doi: 10.1136/jcp.54.5.356.
    1. Kei S. Serum lipid peroxide in cerebrovascular disorders determined by a new colorimetric method. Clinica Chimica Acta. 1978;90(1):37–43. doi: 10.1016/0009-8981(78)90081-5.
    1. Tugirimana P. L., Holderbeke A. L., Kint J. A., Delanghe J. R. A new turbidimetric method for assaying serum C-reactive protein based on phosphocholine interaction. Clinical Chemistry and Laboratory Medicine. 2009;47(11):1417–1422. doi: 10.1515/cclm.2009.312.
    1. Himmelfarb J. Hemodialysis-From Basic Research to Clinical Trials. 161. Basel, Switzerland: Karger Publishers; 2008. Oxidative stress in hemodialysis; pp. 132–137.
    1. Zoccali C., Benedetto F. A., Mallamaci F., et al. Inflammation is associated with carotid atherosclerosis in dialysis patients. Journal of Hypertension. 2000;18(9):1207–1213. doi: 10.1097/00004872-200018090-00006.
    1. Zimmermann J., Herrlinger S., Pruy A., Metzger T., Wanner C. Inflammation enhances cardiovascular risk and mortality in hemodialysis patients. Kidney International. 1999;55(2):648–658. doi: 10.1046/j.1523-1755.1999.00273.x.
    1. Stenvinkel P. Inflammation in end‐stage renal failure: could it be treated? Nephrology Dialysis Transplantation. 2002;17(8):33–38. doi: 10.1093/ndt/17.suppl_8.33.
    1. Xie L. M., Ge Y. Y., Huang X., Zhang Y. Q., Li J. X. Effects of fermentable dietary fiber supplementation on oxidative and inflammatory status in hemodialysis patients. International Journal of Clinical and Experimental Medicine. 2015;8(8):1363–9.
    1. Bárány P., Divino Filho J., Bergström J. High C-reactive protein is a strong predictor of resistance to erythropoietin in hemodialysis patients. American Journal of Kidney Diseases. 1997;29(4):565–568. doi: 10.1016/s0272-6386(97)90339-5.
    1. Kaddam L., FdleAlmula I., Eisawi O. A., Abdelrazig H. A., Elnimeiri M., Lang F. Gum Arabic as fetal hemoglobin inducing agent in sickle cell anemia; in vivo study. BMC Hematology. 2015;15(1):p. 19. doi: 10.1186/s12878-015-0040-6.

Source: PubMed

3
Prenumerera