Pharmacokinetic variability of beta-adrenergic blocking agents used in cardiology

Frederik N Ågesen, Peter E Weeke, Peer Tfelt-Hansen, Jacob Tfelt-Hansen, for ESCAPE‐NET, Frederik N Ågesen, Peter E Weeke, Peer Tfelt-Hansen, Jacob Tfelt-Hansen, for ESCAPE‐NET

Abstract

The aim of this study was to evaluate the pharmacokinetic variability of beta-adrenergic blocking agents used in cardiology by reviewing single-dose and steady-state pharmacokinetic studies from the literature. PubMed was searched for pharmacokinetic studies of beta-adrenergic blocking agents, both single-dose and steady-state studies. The studies included reported maximum plasma concentration (Cmax) and/or area under the concentration curve (AUC). The coefficient of variation (CV%) was calculated for all studies, and a CV% <40% was considered low or moderate variability, and a CV% >40% was considered high variability. The Cmax and AUC were reported a total of 672 times in 192 papers. Based on AUC, metoprolol, propranolol, carvedilol, and nebivolol showed high pharmacokinetic variability (highest first), whereas bisoprolol, atenolol, sotalol, labetalol, nadolol, and pindolol showed low to moderate variability (lowest first). We have shown a high interindividual pharmacokinetic variability that varies markedly in different beta-adrenergic blocking agents; the extreme being steady state ratios as high as 30 in metoprolol. A more personalized approach to the medical treatment of patients may be obtained by combining known pharmacokinetic information about variability, pharmaco-genetics and -dynamics, and patient characteristics, to avoid adverse events or lack of treatment effect.

Keywords: Pharmacokinetics; beta‐adrenergic blocking agents; metoprolol; personalized medicine; pharmacology; propranolol.

Conflict of interest statement

There are no competing interests to declare.

Figures

Figure 1
Figure 1
Cloud plot of the distribution of the coefficient of variance (CV) in beta‐adrenergic blocking agents for the area under the plasma‐concentration time curve (AUC) in steady‐state studies (SS) and in single‐dose (SD) studies with AUC extrapolated to infinity

References

    1. Frishman WH, Saunders E. β‐adrenergic blockers. J Clin Hypertens Greenwich Conn. 2011;13(9):649‐653. 10.1111/j.1751-7176.2011.00515.x.
    1. Brophy JM, Joseph L, Rouleau JL. β‐blockers in congestive heart failure: a Bayesian meta‐analysis. Ann Intern Med. 2001;134(7):550 10.7326/0003-4819-134-7-200104030-00008.
    1. Priori SG, Blomström‐Lundqvist C, Mazzanti A, et al. 2015 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac deathThe Task Force for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death of the European Society of Cardiology (ESC)Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC). Eur Heart J. 2015;36(41):2793‐2867. 10.1093/eurheartj/ehv316.
    1. Mottet F, Vardeny O, de Denus S. Pharmacogenomics of heart failure: a systematic review. Pharmacogenomics. 2016;17(16):1817‐1858. 10.2217/pgs-2016-0118.
    1. Talbert RL. Pharmacokinetics and pharmacodynamics of beta blockers in heart failure. Heart Fail Rev. 2004;9(2):131‐137. 10.1023/B:HREV.0000046368.08825.20.
    1. Ruiz‐Garcia A, Bermejo M, Moss A, Casabo VG. Pharmacokinetics in drug discovery. J Pharm Sci. 2008;97(2):654‐690. 10.1002/jps.21009.
    1. Kirchheiner J, Heesch C, Bauer S, et al. Impact of the ultrarapid metabolizer genotype of cytochrome P450 2D6 on metoprolol pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther. 2004;76(4):302‐312. 10.1016/j.clpt.2004.07.002.
    1. Zanger UM, Schwab M. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther. 2013;138(1):103‐141. 10.1016/j.pharmthera.2012.12.007.
    1. Corletto A, Fröhlich H, Täger T, et al. Beta blockers and chronic heart failure patients: prognostic impact of a dose targeted beta blocker therapy vs. heart rate targeted strategy. . Clin Res Cardiol. 2018;107:1040‐1049. doi:10.1007/s00392‐018‐1277‐4.
    1. Black JW, Duncan WA, Shanks RG. Comparison of some properties of pronethalol and propranolol. Br J Pharmacol Chemother. 1965;25(3):577‐591.
    1. Blake CM, Kharasch ED, Schwab M, Nagele P. A meta‐analysis of CYP2D6 metabolizer phenotype and metoprolol pharmacokinetics. Clin Pharmacol Ther. 2013;94(3):394‐399. 10.1038/clpt.2013.96.
    1. Rowland M, Tozer T. Clinical Pharmacokinetics and Pharmacodynamics. Vol. 4th ed. Philadelphia: Lippincott Williams and Wilkins; 2011.
    1. Kendall MJ. Clinical relevance of pharmacokinetic differences between beta blockers. Am J Cardiol. 1997;80(9B):15J–19J.
    1. Frishman W, Silverman R, Strom J, Elkayam U, Sonnenblick E. Clinical pharmacology of the new beta‐adrenergic blocking drugs. Part 4. Adverse effects. Choosing a β‐adrenoreceptor blocker. Am Heart J. 1979;98(2):256‐262. 10.1016/0002-8703(79)90229-1.
    1. Brodde O‐E, Kroemer HK. Drug‐drug interactions of beta‐adrenoceptor blockers. Arzneimittelforschung. 2003;53(12):814‐822. 10.1055/s-0031-1299835.
    1. Walley T, Pirmohamed M, Proudlove C, Maxwell D. Interaction of metoprolol and fluoxetine. The Lancet. 1993;341(8850):967‐968. 10.1016/0140-6736(93)91265-N.
    1. Lundborg P, Abrahamsson B, Wieselgren I, Walter M. The pharmacokinetics and pharmacodynamics of metoprolol after conventional and controlled‐release administration in combination with hydrochlorothiazide in healthy volunteers. Eur J Clin Pharmacol. 1993;45(2):161‐163.
    1. Melander A, Danielson K, Scherstén B, Wåhlin E. Enhancement of the bioavailability of propranolol and metoprolol by food. Clin Pharmacol Ther. 1977;22(1):108‐112.
    1. Melander A, Stenberg P, Liedholm H, Scherstén B, Wåhlin‐Boll E. Food‐induced reduction in bioavailability of atenolol. Eur J Clin Pharmacol. 1979;16(5):327‐330.
    1. Walle T, Fagan TC, Walle UK, Oexmann M‐J, Conradi EC, Gaffney TE. Food‐induced increase in propranolol bioavailability—Relationship to protein and effects on metabolites. Clin Pharmacol Ther. 1981;30(6):790‐795. 10.1038/clpt.1981.239.
    1. Meier J. Pharmacokinetic comparison of pindolol with other beta‐adrenoceptor‐blocking agents. Am Heart J. 1982;104(2, Part 2):364‐373. doi:10.1016/0002‐8703(82)90127‐2.
    1. Frishman WH, Alwarshetty M. Beta‐adrenergic blockers in systemic hypertension: pharmacokinetic considerations related to the current guidelines. Clin Pharmacokinet. 2002;41(7):505‐516.
    1. Fux R, Mörike K, Pröhmer A, et al. Impact of CYP2D6 genotype on adverse effects during treatment with metoprolol: a prospective clinical study. Clin Pharmacol Ther. 2005;78(4):378‐387. 10.1016/j.clpt.2005.07.004.
    1. Zineh I, Beitelshees AL, Gaedigk A, et al. Pharmacokinetics and CYP2D6 genotypes do not predict metoprolol adverse events or efficacy in hypertension. Clin Pharmacol Ther. 2004;76(6):536‐544. 10.1016/j.clpt.2004.08.020.
    1. Castleden CM, George CF. The effect of ageing on the hepatic clearance of propranolol. Br J Clin Pharmacol. 1979;7(1):49‐54.
    1. Mazzanti A, Maragna R, Vacanti G, et al. Interplay between genetic substrate, QTc duration, and arrhythmia risk in patients with long QT syndrome. J Am Coll Cardiol. 2018;71(15):1663‐1671. 10.1016/j.jacc.2018.01.078.
    1. Packer M, Bristow MR, Cohn JN, et al. The effect of carvedilol on morbidity and mortality in patients with chronic heart failure. U.S. Carvedilol Heart Failure Study Group. N Engl J Med. 1996;334(21):1349‐1355. 10.1056/NEJM199605233342101.
    1. Frishman WH. β‐adrenergic blockade in cardiovascular disease. J Cardiovasc Pharmacol Ther. 2013;18(4):310‐319. 10.1177/1074248413484986.
    1. El Desoky ES, Derendorf H, Klotz U. Variability in response to cardiovascular drugs. Curr Clin Pharmacol. 2006;1(1):35‐46.
    1. Wood AJ. Pharmacologic differences between beta blockers. Am Heart J. 1984;108(4 Pt 2):1070-1077.
    1. Ueno K, Sato H. Sex‐related differences in pharmacokinetics and pharmacodynamics of anti‐hypertensive drugs. Hypertens Res Off J Jpn Soc Hypertens. 2012;35(3):245‐250. 10.1038/hr.2011.189.
    1. Tamargo J, Rosano G, Walther T, et al. Gender differences in the effects of cardiovascular drugs. Eur Heart J Cardiovasc Pharmacother. 2017;3(3):163‐182. 10.1093/ehjcvp/pvw042.
    1. Daniell HW. Cytochrome P450–2D6 genotype definition may improve therapy for paroxysmal atrial fibrillation a case of syncope following “pill‐in‐the‐pocket” quinidine plus propafenone. J Atr Fibrillation. 2014;6(5): 42-49. 10.4022/jafib.978.
    1. Brunton L, Knollmann B, Hilal‐Dandan R. Goodman and Gilman's The Pharmacological Basis of Therapeutics, 13th edn New York: McGraw‐Hill Education/Medical; 2017.

Source: PubMed

3
Prenumerera