Post-ischemic inflammation in the brain

Takashi Shichita, Ryota Sakaguchi, Mayu Suzuki, Akihiko Yoshimura, Takashi Shichita, Ryota Sakaguchi, Mayu Suzuki, Akihiko Yoshimura

Abstract

Post-ischemic inflammation is an essential step in the progression of brain ischemia-reperfusion injury. In this review, we focus on the post-ischemic inflammation triggered by infiltrating immune cells, macrophages, and T lymphocytes. Brain ischemia is a sterile organ, but injury-induced inflammation is mostly dependent on Toll-like receptor (TLR) 2 and TLR4. Some endogenous TLR ligands, high mobility group box 1 (HMGB1) and peroxiredoxin family proteins, in particular, are implicated in the activation and inflammatory cytokine expression in infiltrating macrophages. Following macrophage activation, T lymphocytes infiltrate the ischemic brain and regulate the delayed phase inflammation. IL-17-producing γδT lymphocytes induced by IL-23 from macrophages promote ischemic brain injury, whereas regulatory T lymphocytes suppress the function of inflammatory mediators. A deeper understanding of the inflammatory mechanisms of infiltrating immune cells may lead to the development of novel neuroprotective therapies.

Keywords: DAMPs; T cells; brain; cytokine; inflammation; ischemia; macrophages; stroke.

Figures

Figure 1
Figure 1
Post-ischemic inflammation in the brain. Within 24 h after ischemic stroke onset, various inflammatory mediators are expressed in ischemic brain tissue. ICAM-1 promotes leukocytes infiltration. Cytokines activate infiltrating leukocytes and directly induce ischemic injury in brain cells. Matrix metalloproteinases (MMPs) alter the permeability of epithelial cells and are implicated in BBB breakdown. Endogenous TLR ligands (DAMPs) are released from necrotic brain cells and activate infiltrating immune cells. These inflammatory mediators trigger post-ischemic inflammation by infiltrating leukocytes. There are currently few effective therapies for this phase of leukocyte infiltration.
Figure 2
Figure 2
Two opposing functions of Prx, one inside, and one outside, brain cells. Ischemic stress increases Prx expression within brain cells, which contributes to their survival by catabolizing reactive oxygen species (ROS). When ischemic phenomena finally result in necrosis, the Prx released from necrotic brain cells into the extracellular compartment then functions as a strong TLR2 and TLR4 stimulator (DAMP) for the infiltrating macrophages in ischemic brain tissue.
Figure 3
Figure 3
Post-ischemic inflammation triggered by DAMPs and infiltrating immune cells. At the hyperacute phase of brain ischemia (within 6 h after stroke onset), HMGB1 is released from brain cells and induces BBB breakdown. Following this, blood cells begin to infiltrate into ischemic brain tissue via disrupted vessels during the acute phase of ischemia (12–24 h after stroke onset). Prx is extracellularly released from necrotic brain cells and activates infiltrating macrophages via TLR2 and TLR4. Activated macrophages produce inflammatory cytokines (IL-23, IL-1β, TNF-α, etc.) which promote ischemic brain injury. At the delayed phase of brain ischemia (more than 24 h after stroke onset), IL-23 induces IL-17 production from γδT lymphocytes, which further enhances ischemic damage. Thus, HMGB1 is a hyperacute DAMP, while Prx is secondarily active in post-ischemic inflammation, during the acute phase.
Figure 4
Figure 4
Schematic model of IL-23/IL-17 inflammatory pathway in ischemic brain tissue. Infiltrating macrophages produce IL-23 and IL-12, which induce IL-17-producing γδT lymphocytes and IFN-γ-producing helper T lymphocytes (Th1), respectively. IL-17 from γδT lymphocytes acts on macrophages and brain cells directly, and promotes the expression of inflammatory mediators that enhance apoptotic neuronal cell death and BBB breakdown.
Figure 5
Figure 5
Strategy for developing neuroprotective therapy by suppressing neurotoxic inflammatory response. The targeting of specific inflammatory mediators from macrophages and T lymphocytes can attenuate neurotoxic inflammatory reactions.

References

    1. Abulafia D. P., de Rivero Vaccari J. P., Lozano J. D., Lotocki G., Keane R. W., Dietrich W. D. (2009). Inhibition of the inflammasome complex reduces the inflammatory response after thromboembolic stroke in mice. J. Cereb. Blood Flow Metab. 29, 534–54410.1038/jcbfm.2008.143
    1. Asahi M., Asahi K., Jung J. C., del Zoppo G. J., Fini M. E., Lo E. H. (2000). Role for matrix metalloproteinase 9 after cerebral ischemia: effects of gene knockout and enzyme inhibition with BB-94. J. Cereb. Blood Flow Metab. 20, 1681–1689
    1. Barone F. C., Feuerstein G. Z. (1999). Inflammatory mediators and stroke: new opportunities for novel therapeutics. J. Cereb. Blood Flow Metab. 19, 819–834
    1. Becker K., Kindrick D., McCarron R., Hallenbeck J., Winn R. (2003). Adoptive transfer of myelin basic protein-tolerized splenocytes to naive animals reduces infarct size: a role for lymphocytes in ischemic brain injury? Stroke 34, 1809–181510.1161/01.STR.0000078308.77727.EA
    1. Becker K. J. (2009). Sensitization and tolerization to brain antigens in stroke. Neuroscience 158, 1090–109710.1016/j.neuroscience.2008.07.027
    1. Boutin H., LeFeuvre R. A., Horai R., Asano M., Iwakura Y., Rothwell N. J. (2001). Role of IL-1alpha and IL-1beta in ischemic brain damage. J. Neurosci. 21, 5528–5534
    1. Chakraborty S., Kaushik D. K., Gupta M., Basu A. (2010). Inflammasome signaling at the heart of central nervous system pathology. J. Neurosci. Res. 88, 1615–1631
    1. Chen C. J., Kono H., Golenbock D., Reed G., Akira S., Rock K. L. (2007). Identification of a key pathway required for the sterile inflammatory response triggered by dying cells. Nat. Med. 13, 851–85610.1038/nm1603
    1. Chen F., Liu Z., Wu W., Rozo C., Bowdridge S., Millman A., Van Rooijen N., Urban J. F., Jr., Wynn T. A., Gause W. C. (2012). An essential role for TH2-type responses in limiting acute tissue damage during experimental helminth infection. Nat. Med. 18, 260–26610.1038/nm.2628
    1. Connolly E. S., Jr., Winfree C. J., Springer T. A., Naka Y., Liao H., Yan S. D., Stern D. M., Solomon R. A., Gutierrez-Ramos J. C., Pinsky D. J. (1996). Cerebral protection in homozygous null ICAM-1 mice after middle cerebral artery occlusion. Role of neutrophil adhesion in the pathogenesis of stroke. J. Clin. Invest. 97, 209–21610.1172/JCI118392
    1. Cua D. J., Sherlock J., Chen Y., Murphy C. A., Joyce B., Seymour B., Lucian L., To W., Kwan S., Churakova T., Zurawski S., Wiekowski M., Lira S. A., Gorman D., Kastelein R. A., Sedgwick J. D. (2003). Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421, 744–74810.1038/nature01355
    1. Dev K. K., Mullershausen F., Mattes H., Kuhn R. R., Bilbe G., Hoyer D., Mir A. (2008). Brain sphingosine-1-phosphate receptors: implication for FTY720 in the treatment of multiple sclerosis. Pharmacol. Ther. 117, 77–9310.1016/j.pharmthera.2007.08.005
    1. Eltzschig H. K., Eckle T. (2011). Ischemia and reperfusion – from mechanism to translation. Nat. Med. 17, 1391–140110.1038/nm.2507
    1. Famakin B. M., Mou Y., Ruetzler C. A., Bembry J., Maric D., Hallenbeck J. M. (2011). Disruption of downstream MyD88 or TRIF Toll-like receptor signaling does not protect against cerebral ischemia. Brain Res. 1388, 148–15610.1016/j.brainres.2011.02.074
    1. Fossiez F., Djossou O., Chomarat P., Flores-Romo L., Ait-Yahia S., Maat C., Pin J. J., Garrone P., Garcia E., Saeland S., Blanchard D., Gaillard C., Das Mahapatra B., Rouvier E., Golstein P., Banchereau J., Lebecque S. (1996). T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J. Exp. Med. 183, 2593–260310.1084/jem.183.6.2593
    1. Fraser P. A. (2011). The role of radical generation in increasing cerebrovascular permeability. Free Radic. Biol. Med. 51, 967–97710.1016/j.freeradbiomed.2011.06.003
    1. Gertz K., Kronenberg G., Kälin R. E., Baldinger T., Werner C., Balkaya M., Eom G. D., Hellmann-Regen J., Kröber J., Miller K. R., Lindauer U., Laufs U., Dirnagl U., Heppner F. L., Endres M. (2012). Essential role of interleukin-6 in post-stroke angiogenesis. Brain.10.1093/brain/aws075
    1. Hallenbeck J. M. (2002). The many faces of tumor necrosis factor in stroke. Nat. Med. 8, 1363–136810.1038/nm1202-1363
    1. Hasegawa Y., Suzuki H., Sozen T., Rolland W., Zhang J. H. (2010). Activation of sphingosine 1-phosphate receptor-1 by FTY720 is neuroprotective after ischemic stroke in rats. Stroke 41, 368–37410.1161/STROKEAHA.110.579136
    1. Hayakawa K., Qiu J., Lo E. H. (2010). Biphasic actions of HMGB1 signaling in inflammation and recovery after stroke. Ann. N. Y. Acad. Sci. 1207, 50–5710.1111/j.1749-6632.2010.05728.x
    1. Hurn P. D., Subramanian S., Parker S. M., Afentoulis M. E., Kaler L. J., Vandenbark A. A., Offner H. (2007). T- and B-cell-deficient mice with experimental stroke have reduced lesion size and inflammation. J. Cereb. Blood Flow Metab. 27, 1798–180510.1038/sj.jcbfm.9600482
    1. Hyakkoku K., Hamanaka J., Tsuruma K., Shimazawa M., Tanaka H., Uematsu S., Akira S., Inagaki N., Nagai H., Hara H. (2010). Toll-like receptor 4 (TLR4), but not TLR3 or TLR9, knock-out mice have neuroprotective effects against focal cerebral ischemia. Neuroscience 171, 258–26710.1016/j.neuroscience.2010.08.054
    1. Iadecola C. (2004). Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat. Rev. Neurosci. 5, 347–36010.1038/nrn1387
    1. Iadecola C., Anrather J. (2011). The immunology of stroke: from mechanisms to translation. Nat. Med. 17, 796–80810.1038/nm.2399
    1. Ifergan I., Kébir H., Bernard M., Wosik K., Dodelet-Devillers A., Cayrol R., Arbour N., Prat A. (2008). The blood-brain barrier induces differentiation of migrating monocytes into Th17-polarizing dendritic cells. Brain 131, 785–79910.1093/brain/awm295
    1. Jander S., Karemer M., Schroeter M., Witte O. W., Stoll G. (1995). Lymphocytic infiltration and expression of intercellular adhesion molecule-1 in photochemically induced ischemia of the rat cortex. J. Cereb. Blood Flow Metab. 15, 42–5110.1038/jcbfm.1995.5
    1. Jung J. E., Kim G. S., Chan P. H. (2011). Neuroprotection by interleukin-6 is mediated by signal transducer and activator of transcription 3 and antioxidative signaling in ischemic stroke. Stroke 42, 3574–357910.1161/STROKEAHA.111.626648
    1. Kebir H., Kreymborg K., Ifergan I., Dodelet-Devillers A., Cayrol R., Bernard M., Giuliani F., Arbour N., Becher B., Prat A. (2007). Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation. Nat. Med. 13, 1173–117510.1038/nm1651
    1. Kim J. B., Sig Choi J., Yu Y. M., Nam K., Piao C. S., Kim S. W., Lee M. H., Han P. L., Park J. S., Lee J. K. (2006). HMGB1, a novel cytokine-like mediator linking acute neuronal death and delayed neuroinflammation in the postischemic brain. J. Neurosci. 26, 6413–642110.1523/JNEUROSCI.5236-05.2006
    1. Konoeda F., Shichita T., Yoshida H., Sugiyama Y., Muto G., Hasegawa E., Morita R., Suzuki N., Yoshimura A. (2010). Therapeutic effect of IL-12/23 and their signaling pathway blockade on brain ischemia model. Biochem. Biophys. Res. Commun. 402, 500–50610.1016/j.bbrc.2010.10.058
    1. Lambertsen K. L., Gregersen R., Meldgaard M., Clausen B. H., Heibøl E. K., Ladeby R., Knudsen J., Frandsen A., Owens T., Finsen B. (2004). A role for interferon-gamma in focal cerebral ischemia in mice. J. Neuropathol. Exp. Neurol. 63, 942–955
    1. Liesz A., Suri-Payer E., Veltkamp C., Doerr H., Sommer C., Rivest S., Giese T., Veltkamp R. (2009). Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nat. Med. 15, 192–19910.1038/nm.1927
    1. Liesz A., Zhou W., Mracskó É., Karcher S., Bauer H., Schwarting S., Sun L., Bruder D., Stegemann S., Cerwenka A., Sommer C., Dalpke A. H., Veltkamp R. (2011). Inhibition of lymphocyte trafficking shields the brain against deleterious neuroinflammation after stroke. Brain 134, 704–72010.1093/brain/awr008
    1. Liu K., Mori S., Takahashi H. K., Tomono Y., Wake H., Kanke T., Sato Y., Hiraga N., Adachi N., Yoshino T., Nishibori M. (2007). Anti-high mobility group box 1 monoclonal antibody ameliorates brain infarction induced by transient ischemia in rats. FASEB J. 21, 3904–391610.1096/fj.06-7366lsf
    1. Lo E. H. (2010). Degeneration and repair in central nervous system disease. Nat. Med. 16, 1205–120910.1038/nm.2226
    1. Macrez R., Ali C., Toutirais O., Le Mauff B., Defer G., Dirnagl U., Vivien D. (2011). Stroke and the immune system: from pathophysiology to new therapeutic strategies. Lancet Neurol. 10, 471–48010.1016/S1474-4422(11)70066-7
    1. Marsh B. J., Williams-Karnesky R. L., Stenzel-Poore M. P. (2009). Toll-like receptor signaling in endogenous neuroprotection and stroke. Neuroscience 158, 1007–102010.1016/j.neuroscience.2008.07.067
    1. Martin B., Hirota K., Cua D. J., Stockinger B., Veldhoen M. (2009). Interleukin-17-producing gammadelta T cells selectively expand in response to pathogen products and environmental signals. Immunity 31, 321–33010.1016/j.immuni.2009.06.020
    1. Martinon F., Burns K., Tschopp J. (2002). The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-1beta. Mol. Cell 10, 417–42610.1016/S1097-2765(02)00599-3
    1. Meisel C., Meisel A. (2011). Suppressing immunosuppression after stroke. N. Engl. J. Med. 365, 2134–213610.1056/NEJMcibr1112454
    1. Morancho A., Rosell A., Garcia-Bonilla L., Montaner J. (2010). Metalloproteinase and stroke infarct size: role for anti-inflammatory treatment? Ann. N. Y. Acad. Sci. 1207, 123–13310.1111/j.1749-6632.2010.05734.x
    1. Moskowitz M. A., Lo E. H., Ladecola C. (2010). The science of stroke: mechanisms in search of treatments. Neuron 67, 181–19810.1016/j.neuron.2010.07.002
    1. Ooboshi H., Ibayashi S., Shichita T., Kumai Y., Takada J., Ago T., Arakawa S., Sugimori H., Kamouchi M., Kitazono T., Iida M. (2006). Postischemic gene transfer of interleukin-10 protects against both focal and global brain ischemia. Circulation 111, 913–91910.1161/01.CIR.0000155622.68580.DC
    1. Patenaude A., Murthy M. R., Mirault M. E. (2005). Emerging roles of thioredoxin cycle enzymes in the central nervous system. Cell. Mol. Life Sci. 62, 1063–108010.1007/s00018-005-4541-5
    1. Pfeilschifter W., Czech-Zechmeister B., Sujak M., Foerch C., Wichelhaus T. A., Pfeilschifter J. (2011). Treatment with the immunomodulator FTY720 does not promote spontaneous bacterial infections after experimental stroke in mice. Exp. Transl. Stroke Med. 3, 2.10.1186/2040-7378-3-2
    1. Qiu J., Nishimura M., Wang Y., Sims J. R., Qiu S., Savitz S. I., Salomone S., Moskowitz M. A. (2008). Early release of HMGB-1 from neurons after the onset of brain ischemia. J. Cereb. Blood Flow Metab. 28, 927–93810.1038/sj.jcbfm.9600582
    1. Rashidian J., Rousseaux M. W., Venderova K., Qu D., Callaghan S. M., Phillips M., Bland R. J., During M. J., Mao Z., Slack R. S., Park D. S. (2009). Essential role of cytoplasmic cdk5 and Prx2 in multiple ischemic injury models, in vivo. J. Neurosci. 29, 12497–1250510.1523/JNEUROSCI.3892-09.2009
    1. Reboldi A., Coisne C., Baumjohann D., Benvenuto F., Bottinelli D., Lira S., Uccelli A., Lanzavecchia A., Engelhardt B., Sallusto F. (2009). C-C chemokine receptor 6-regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE. Nat. Immunol. 10, 514–52310.1038/ni.1716
    1. Ren X., Akiyoshi K., Dziennis S., Vandenbark A. A., Herson P. S., Hurn P. D., Offner H. (2011). Regulatory B cells limit CNS inflammation and neurologic deficits in murine experimental stroke. J. Neurosci. 31, 8556–856310.1523/JNEUROSCI.1623-11.2011
    1. Rivest S. (2009). Regulation of innate immune responses in the brain. Nat. Rev. Immunol. 9, 429–43910.1038/nri2565
    1. Schroeter M., Jander S., Witte O. W., Stoll G. (1994). Local immune responses in the rat middle cerebral artery occlusion. J. Neuroimmunol. 55, 195–20310.1016/0165-5728(94)90010-8
    1. Shichita T., Hasegawa E., Kimura A., Morita R., Sakaguchi R., Takada I., Sekiya T., Ooboshi H., Kitazono T., Yanagawa T., Ishii T., Takahashi H., Mori S., Nishibori M., Kuroda K., Miyake K., Akira S., Yoshimura A. (2012). Peroxiredoxin family proteins are key initiators of post-ischemic inflammation in the brain. Nat. Med. 10.1038/nm.2749
    1. Shichita T., Sugiyama Y., Ooboshi H., Sugimori H., Nakagawa R., Takada I., Iwaki T., Okada Y., Iida M., Cua D. J., Iwakura Y., Yoshimura A. (2009). Pivotal role of cerebral interleukin-17-producing gammadeltaT cells in the delayed phase of ischemic brain injury. Nat. Med. 15, 946–95010.1038/nm.1999
    1. Stewart C. R., Stuart L. M., Wilkinson K., van Gils J. M., Deng J., Halle A., Rayner K. J., Boyer L., Zhong R., Frazier W. A., Lacy-Hulbert A., El Khoury J., Golenbock D. T., Moore K. J. (2010). CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat. Immunol. 11, 155–16110.1038/ni.1836
    1. Strecker J. K., Minnerup J., Gess B., Ringelstein E. B., Schäbitz W. R., Schilling M. (2011). Monocyte chemoattractant protein-1-deficiency impairs the expression of IL-6, IL-1b and G-CSF after transient focal ischemia in mice. PLoS ONE 6, e25863.10.1371/journal.pone.0025863
    1. Subramanian S., Zhang B., Kosaka Y., Burrows G. G., Grafe M. R., Vandenbark A. A., Hurn P. D., Offner H. (2009). Recombinant T cell receptor ligand treats experimental stroke. Stroke 40, 2539–254510.1161/STROKEAHA.108.543991
    1. Sutton C. E., Lalor S. J., Sweeney C. M., Brereton C. F., Lavelle E. C., Mills K. H. (2009). Interleukin-1 and IL-23 induce innate IL-17 production from gammadelta T cells, amplifying Th17 responses and autoimmunity. Immunity 31, 331–34110.1016/j.immuni.2009.08.001
    1. Takano T., Oberheim N., Cotrina M. L., Nedergaard M. (2009). Astrocytes and ischemic injury. Stroke 40, S8–S1210.1161/STROKEAHA.108.000014
    1. Tang S. C., Arumugam T. V., Xu X., Cheng A., Mughal M. R., Jo D. G., Lathia J. D., Siler D. A., Chigurupati S., Ouyang X., Magnus T., Camandola S., Mattson M. P. (2007). Pivotal role for neuronal Toll-like receptors in ischemic brain injury and functional deficits. Proc. Natl. Acad. Sci. U.S.A. 104, 13798–1380310.1073/pnas.0702553104
    1. Terao S., Yilmaz G., Stokes K. Y., Russell J., Ishikawa M., Kawase T., Granger D. N. (2008). Blood cell-derived RANTES mediates cerebral microvascular dysfunction, inflammation, and tissue injury after focal ischemia-reperfusion. Stroke 39, 2560–257010.1161/STROKEAHA.107.494542
    1. Terao Y., Ohta H., Oda A., Nakagaito Y., Kiyota Y., Shintani Y. (2009). Macrophage inflammatory protein-3alpha plays a key role in the inflammatory cascade in rat focal cerebral ischemia. Neurosci. Res. 64, 75–8210.1016/j.neures.2009.01.017
    1. Wei Y., Yemisci M., Kim H. H., Yung L. M., Shin H. K., Hwang S. K., Guo S., Qin T., Alsharif N., Brinkmann V., Liao J. K., Lo E. H., Waeber C. (2011). Fingolimod provides long-term protection in rodent models of cerebral ischemia. Ann. Neurol. 69, 119–12910.1002/ana.22186
    1. Xiong X., Barreto G. E., Xu L., Ouyang Y. B., Xie X., Giffard R. G. (2011). Increased brain injury and worsened neurological outcome in interleukin-4 knockout mice after transient focal cerebral ischemia. Stroke 42, 2026–203210.1161/STROKEAHA.110.593772
    1. Yadav A., Kalita A., Dhillon S., Banerjee K. (2005). JAK/STAT3 pathway is involved in survival of neurons in response to insulin like growth factor and negatively regulated by suppressor of cytokine signal-3. J. Biol. Chem. 280, 31830–3184010.1074/jbc.M501316200
    1. Yamashita T., Sawamoto K., Suzuki S., Suzuki N., Adachi K., Kawase T., Mihara M., Ohsugi Y., Abe K., Okano H. (2005). Blockade of interleukin-6 signaling aggravates ischemic cerebral damage in mice: possible involvement of Stat3 activation in the protection of neurons. J. Neurochem. 94, 459–46810.1111/j.1471-4159.2005.03227.x
    1. Yanai H., Ban T., Wang Z., Choi M. K., Kawamura T., Negishi H., Nakasato M., Lu Y., Hangai S., Koshiba R., Savitsky D., Ronfani L., Akira S., Bianchi M. E., Honda K., Tamura T., Kodama T., Taniguchi T. (2009). HMGB proteins function as universal sentinels for nucleic-acid-mediated innate immune responses. Nature 462, 99–10310.1038/nature08512
    1. Yang Q. W., Lu F. L., Zhou Y., Wang L., Zhong Q., Lin S., Xiang J., Li J. C., Fang C. Q., Wang J. Z. (2011). HMBG1 mediates ischemia-reperfusion injury by TRIF-adaptor independent Toll-like receptor 4 signaling. J. Cereb. Blood Flow Metab. 31, 593–60510.1038/jcbfm.2010.129
    1. Yilmaz G., Arumugam T. V., Stokes K. Y., Granger D. N. (2006). Role of T lymphocytes and interferon-gamma in ischemic stroke. Circulation 113, 2105–211210.1161/CIRCULATIONAHA.105.593046
    1. Zhang J., Takahashi H. K., Liu K., Wake H., Liu R., Maruo T., Date I., Yoshino T., Ohtsuka A., Mori S., Nishibori M. (2011). Anti-high mobility group box-1 monoclonal antibody protects the blood-brain barrier from ischemia-induced disruption in rats. Stroke 42, 1420–142810.1161/STROKEAHA.110.593129
    1. Zhang Q., Raoof M., Chen Y., Sumi Y., Sursal T., Junger W., Brohi K., Itagaki K., Hauser C. J. (2010). Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 464, 104–10710.1038/nature08780

Source: PubMed

3
Prenumerera