In-line filtration in very preterm neonates: a randomized controlled trial

Anne-Laure Virlouvet, Julien Pansiot, Artemis Toumazi, Marina Colella, Andreas Capewell, Emilie Guerriero, Thomas Storme, Stéphane Rioualen, Aurélie Bourmaud, Valérie Biran, Olivier Baud, Anne-Laure Virlouvet, Julien Pansiot, Artemis Toumazi, Marina Colella, Andreas Capewell, Emilie Guerriero, Thomas Storme, Stéphane Rioualen, Aurélie Bourmaud, Valérie Biran, Olivier Baud

Abstract

In-line filtration is increasingly used in critically-ill infants but its benefits, by preventing micro-particle infusion in very preterm neonates, remain to be demonstrated. We conducted a randomized controlled trial among very preterm infants allocated to receive either in-line filtration of all the intra-venous lines or standard care without filters. The primary outcome was differences greater than 20% in the median changes in pro-inflammatory cytokine serum concentrations measured at day 3 and day 8 (+/-1) using a Luminex multianalytic profiling technique. Major neonatal complications were analyzed as secondary predefined outcomes. We randomized 146 infants, assigned to filter (n = 73) or control (n = 73) group. Difference over 20% in pro-inflammatory cytokine concentration between day 3 and day 8 was not found statistically different between the two groups, both in intent-to-treat (with imputation) and per protocol (without imputation) analyses. The incidences of most of neonatal complications were found to be similar. Hence, this trial did not evidence a beneficial effect of in-line filtration in very preterm infants on the inflammatory response syndrome and neonatal morbidities. These data should be interpreted according to local standards in infusion preparation and central line management.

Conflict of interest statement

Andreas Capewell is an employee of Pall Medical, SLS, Dreieich, Germany. The other authors have no conflict of interest to disclose.

Figures

Figure 1
Figure 1
Time course of pro-inflammatory cytokine serum concentrations between birth and Day 30, in per protocol (A) and intend-to-treat (B) analyses.
Figure 2
Figure 2
Distribution of patients according to their cumulative morbidities recorded before discharge.

References

    1. Ancel PY, et al. Survival and morbidity of preterm children born at 22 through 34 weeks’ gestation in France in 2011: results of the EPIPAGE-2 cohort study. JAMA Pediatr. 2015;169:230–238. doi: 10.1001/jamapediatrics.2014.3351.
    1. Dammann O, Leviton A. Inflammatory brain damage in preterm newborns–dry numbers, wet lab, and causal inferences. Early Hum. Dev. 2004;79:1–15. doi: 10.1016/j.earlhumdev.2004.04.009.
    1. Dammann O, et al. Duration of Systemic Inflammation in the First Postnatal Month Among Infants Born Before the 28th Week of Gestation. Inflamm. 2016;39:672–677. doi: 10.1007/s10753-015-0293-z.
    1. Volpe JJ. Postnatal sepsis, necrotizing entercolitis, and the critical role of systemic inflammation in white matter injury in premature infants. J. Pediatr. 2008;153:160–163. doi: 10.1016/j.jpeds.2008.04.057.
    1. Kuban KCK, et al. Association of Circulating Proinflammatory and Anti-inflammatory Protein Biomarkers in Extremely Preterm Born Children with Subsequent Brain Magnetic Resonance Imaging Volumes and Cognitive Function at Age 10 Years. J. Pediatr. 2019;210:81–90 e83. doi: 10.1016/j.jpeds.2019.03.018.
    1. O’Shea TM, et al. Elevated blood levels of inflammation-related proteins are associated with an attention problem at age 24 mo in extremely preterm infants. Pediatr. Res. 2014;75:781–787. doi: 10.1038/pr.2014.41.
    1. Jobe AH. Antenatal factors and the development of bronchopulmonary dysplasia. Semin. Neonatol. 2003;8:9–17. doi: 10.1016/S1084-2756(02)00188-4.
    1. Jobe AH. The new bronchopulmonary dysplasia. Curr. Opin. Pediatr. 2011;23:167–172. doi: 10.1097/MOP.0b013e3283423e6b.
    1. Bose C, et al. Blood protein concentrations in the first two postnatal weeks that predict bronchopulmonary dysplasia among infants born before the 28th week of gestation. Pediatr. Res. 2011;69:347–353. doi: 10.1203/PDR.0b013e31820a58f3.
    1. Sood BG, et al. Perinatal systemic inflammatory response syndrome and retinopathy of prematurity. Pediatr. Res. 2010;67:394–400. doi: 10.1203/PDR.0b013e3181d01a36.
    1. Yu H, et al. Serum concentrations of cytokines in infants with retinopathy of prematurity. APMIS. 2014;122:818–823. doi: 10.1111/apm.12223.
    1. Dammann O, et al. Immaturity, perinatal inflammation, and retinopathy of prematurity: a multi-hit hypothesis. Early Hum. Dev. 2009;85:325–329. doi: 10.1016/j.earlhumdev.2008.12.010.
    1. Hellgren G, et al. Increased postnatal concentrations of pro-inflammatory cytokines are associated with reduced IGF-I levels and retinopathy of prematurity. Growth Horm. IGF Res. 2018;39:19–24. doi: 10.1016/j.ghir.2017.11.006.
    1. Holm M, et al. Systemic Inflammation-Associated Proteins and Retinopathy of Prematurity in Infants Born Before the 28th Week of Gestation. Invest. Ophthalmol. Vis. Sci. 2017;58:6419–6428. doi: 10.1167/iovs.17-21931.
    1. Wu HC, Shen CM, Wu YY, Yuh YS, Kua KE. Subclinical histologic chorioamnionitis and related clinical and laboratory parameters in preterm deliveries. Pediatr. Neonatol. 2009;50:217–221. doi: 10.1016/S1875-9572(09)60066-8.
    1. Leviton A, et al. Antecedents of inflammation biomarkers in preterm newborns on days 21 and 28. Acta Paediatr. 2016;105:274–280. doi: 10.1111/apa.13286.
    1. Kuban KC, et al. The breadth and type of systemic inflammation and the risk of adverse neurological outcomes in extremely low gestation newborns. Pediatr. Neurol. 2015;52:42–48. doi: 10.1016/j.pediatrneurol.2014.10.005.
    1. Bethune K, Allwood M, Grainger C, Wormleighton C. & British Pharmaceutical Nutrition Group Working, P. Use of filters during the preparation and administration of parenteral nutrition: position paper and guidelines prepared by a British pharmaceutical nutrition group working party. Nutr. 2001;17:403–408. doi: 10.1016/S0899-9007(01)00536-6.
    1. Backhouse CM, et al. Particulate contaminants of intravenous medications and infusions. J. Pharm. Pharmacol. 1987;39:241–245. doi: 10.1111/j.2042-7158.1987.tb06260.x.
    1. Puntis JW, Wilkins KM, Ball PA, Rushton DI, Booth IW. Hazards of parenteral treatment: do particles count? Arch. Dis. Child. 1992;67:1475–1477. doi: 10.1136/adc.67.12.1475.
    1. Oie S, Kamiya A. Particulate and microbial contamination in in-use admixed parenteral nutrition solutions. Biol. Pharm. Bull. 2005;28:2268–2270. doi: 10.1248/bpb.28.2268.
    1. Jack T, et al. Analysis of particulate contaminations of infusion solutions in a pediatric intensive care unit. Intensive Care Med. 2010;36:707–711. doi: 10.1007/s00134-010-1775-y.
    1. Hartman C, et al. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Complications. Clin. Nutr. 2018;37:2418–2429. doi: 10.1016/j.clnu.2018.06.956.
    1. Brent BE, Jack T, Sasse M. In-line filtration of intravenous fluids retains ‘spearhead’-shaped particles from the vascular system after open-heart surgery. Eur. Heart J. 2007;28:1192. doi: 10.1093/eurheartj/ehl398.
    1. Ball PA. Intravenous in-line filters: filtering the evidence. Curr. Opin. Clin. Nutr. Metab. Care. 2003;6:319–325.
    1. Jack T, et al. In-line filtration reduces severe complications and length of stay on pediatric intensive care unit: a prospective, randomized, controlled trial. Intensive Care Med. 2012;38:1008–1016. doi: 10.1007/s00134-012-2539-7.
    1. van Lingen RA, Baerts W, Marquering AC, Ruijs GJ. The use of in-line intravenous filters in sick newborn infants. Acta Paediatr. 2004;93:658–662. doi: 10.1111/j.1651-2227.2004.tb02993.x.
    1. Foster, J. P., Richards, R., Showell, M. G. & Jones, L. J. Intravenous in-line filters for preventing morbidity and mortality in neonates. Cochrane Database Syst Rev, CD005248, 10.1002/14651858.CD005248.pub3 (2015).
    1. Gikic M, Di Paolo ER, Pannatier A, Cotting J. Evaluation of physicochemical incompatibilities during parenteral drug administration in a paediatric intensive care unit. Pharm. World Sci. 2000;22:88–91. doi: 10.1023/A:1008780126781.
    1. Walsh MC, et al. Summary proceedings from the bronchopulmonary dysplasia group. Pediatrics. 2006;117:S52–56. doi: 10.1542/peds.2005-0620I.
    1. Bell MJ. Neonatal necrotizing enterocolitis. N. Engl. J. Med. 1978;298:281–282. doi: 10.1056/NEJM197806012982206.
    1. Little, R. J. A. & Rubin, D. B. Statistical analysis with missing data. (Wiley, 1987).
    1. Krajewski P, et al. Assessment of interleukin-6, interleukin-8 and interleukin-18 count in the serum of IUGR newborns. J. Matern. Fetal Neonatal Med. 2014;27:1142–1145. doi: 10.3109/14767058.2013.851186.
    1. McElrath TF, et al. Perinatal systemic inflammatory responses of growth-restricted preterm newborns. Acta Paediatr. 2013;102:e439–442. doi: 10.1111/apa.12339.
    1. Neta GI, et al. Umbilical cord serum cytokine levels and risks of small-for-gestational-age and preterm birth. Am. J. Epidemiol. 2010;171:859–867. doi: 10.1093/aje/kwq028.
    1. Rideau Batista Novais A, et al. Transcriptomic regulations in oligodendroglial and microglial cells related to brain damage following fetal growth restriction. Glia. 2016;64:2306–2320. doi: 10.1002/glia.23079.
    1. Olivier P, et al. Moderate growth restriction: deleterious and protective effects on white matter damage. Neurobiol. Dis. 2007;26:253–263. doi: 10.1016/j.nbd.2007.01.001.
    1. Baud O, et al. Gestational hypoxia induces white matter damage in neonatal rats: a new model of periventricular leukomalacia. Brain Pathol. 2004;14:1–10. doi: 10.1111/j.1750-3639.2004.tb00492.x.
    1. Mallard C, Hagberg H. Inflammation-induced preconditioning in the immature brain. Semin. Fetal Neonatal Med. 2007;12:280–286. doi: 10.1016/j.siny.2007.01.014.
    1. Volpe JJ. Systemic inflammation, oligodendroglial maturation, and the encephalopathy of prematurity. Ann. Neurol. 2011;70:525–529. doi: 10.1002/ana.22533.
    1. Sasse M, et al. In-line Filtration Decreases Systemic Inflammatory Response Syndrome, Renal and Hematologic Dysfunction in Pediatric Cardiac Intensive Care Patients. Pediatr. Cardiol. 2015;36:1270–1278. doi: 10.1007/s00246-015-1157-x.
    1. Boehne M, et al. In-line filtration minimizes organ dysfunction: new aspects from a prospective, randomized, controlled trial. BMC Pediatr. 2013;13:21. doi: 10.1186/1471-2431-13-21.
    1. Taylor JE, McDonald SJ, Tan K. Prevention of central venous catheter-related infection in the neonatal unit: a literature review. J. Matern. Fetal Neonatal Med. 2015;28:1224–1230. doi: 10.3109/14767058.2014.949663.

Source: PubMed

3
Prenumerera