Recently discovered human coronaviruses

Brigitte A Wevers, Lia van der Hoek, Brigitte A Wevers, Lia van der Hoek

Abstract

In marked contrast to their historical classification as relatively harmless, common cold-causing, respiratory pathogens, human coronaviruses (HCoVs) are associated with more severe clinical complications, as emphasized by the discovery of severe acute respiratory syndrome-associated CoV (SARS-CoV) in 2003. Still, their precise pathogenic potential is largely unknown, particularly regarding the most recently identified strains HCoV-NL63 and HCoV-HKU1, and definite proof for their etiology remains a major challenge. This article focuses on the characteristics of the five HCoVs that are known, and summarizes current knowledge of their pathogenic potential in people, with an emphasis on the interactions between these viruses and their cognate receptors on susceptible target cells.

References

    1. Gonzalez J.M., Gomez-Puertas P., Cavanagh D. A comparative sequence analysis to revise the current taxonomy of the family Coronaviridae. Arch Virol. 2003;148(11):2207–2235.
    1. Gorbalenya A.E., Enjuanes L., Ziebuhr J. Nidovirales: evolving the largest RNA virus genome. Virus Res. 2006;117(1):17–37.
    1. Pasternak A.O., Spaan W.J., Snijder E.J. Nidovirus transcription: how to make sense…? J Gen Virol. 2006;87:1403–1421.
    1. Sawicki S.G., Sawicki D.L., Siddell S.G. A contemporary view of coronavirus transcription. J Virol. 2007;81(1):20–29.
    1. Masters P.S. The molecular biology of coronaviruses. Adv Virus Res. 2006;66:193–292.
    1. Gallagher T.M., Buchmeier M.J. Coronavirus spike proteins in viral entry and pathogenesis. Virology. 2001;279(2):371–374.
    1. Lai M.M.C., Perlman S., Anderson L.J. Coronaviridae. In: Knipe M.D., Howley P.M., editors. Field's virology. Lippincott Williams & Wilkins; Philadelphia: 2007. pp. 1305–1356.
    1. McIntosh K. Coronaviruses. In: Knipe D.M., Howley P.M., editors. Field's virology. Lippincott-Raven Publishers; Philadelphia: 1996. pp. 1095–1103.
    1. van der Hoek L. Human coronaviruses: what do they cause? Antivir Ther. 2007;12(4 Pt B):651–658.
    1. Drosten C., Gunther S., Preiser W. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med. 2003;348(20):1967–1976.
    1. Fouchier R.A., Kuiken T., Schutten M. Aetiology: Koch's postulates fulfilled for SARS virus [letter] Nature. 2003;423(6937):240.
    1. Ksiazek T.G., Erdman D., Goldsmith C.S. A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med. 2003;348(20):1953–1966.
    1. Kuiken T., Fouchier R.A., Schutten M. Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome. Lancet. 2003;362(9380):263–270.
    1. Peiris J.S., Lai S.T., Poon L.L. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet. 2003;361(9366):1319–1325.
    1. Peiris J.S., Guan Y., Yuen K.Y. Severe acute respiratory syndrome. Nat Med. 2004;10(Suppl 12):s88–s97.
    1. Fouchier R.A., Hartwig N.G., Bestebroer T.M. A previously undescribed coronavirus associated with respiratory disease in humans. Proc Natl Acad Sci U S A. 2004;101(16):6212–6216.
    1. van der Hoek L., Pyrc K., Jebbink M.F. Identification of a new human coronavirus. Nat Med. 2004;10(4):368–373.
    1. Woo P.C., Lau S.K., Chu C.M. Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. J Virol. 2005;79(2):884–895.
    1. Hamre D., Procknow J.J. A new virus isolated from the human respiratory tract. Proc Soc Exp Biol Med. 1966;121(1):190–193.
    1. McIntosh K., Dees J.H., Becker W.B. Recovery in tracheal organ cultures of novel viruses from patients with respiratory disease. Proc Natl Acad Sci U S A. 1967;57(4):933–940.
    1. Bradburne A.F., Bynoe M.L., Tyrrell D.A. Effects of a new human respiratory virus in volunteers. Br Med J. 1967;3(5568):767–769.
    1. Heikkinen T., Jarvinen A. The common cold. Lancet. 2003;361(9351):51–59.
    1. Larson H.E., Reed S.E., Tyrrell D.A. Isolation of rhinoviruses and coronaviruses from 38 colds in adults. J Med Virol. 1980;5(3):221–229.
    1. Myint S., Johnston S., Sanderson G. Evaluation of nested polymerase chain methods for the detection of human coronaviruses 229E and OC43. Mol Cell Probes. 1994;8(5):357–364.
    1. Navas-Martin S.R., Weiss S. Coronavirus replication and pathogenesis: implications for the recent outbreak of severe acute respiratory syndrome (SARS) and the challenge for vaccine development. J Neurovirol. 2004;10(2):75–85.
    1. Reed S.E. The behaviour of recent isolates of human respiratory coronavirus in vitro and in volunteers: evidence of heterogeneity among 229E-related strains. J Med Virol. 1984;13(2):179–192.
    1. Riski H., Hovi T. Coronavirus infections of man associated with diseases other than the common cold. J Med Virol. 1980;6(3):259–265.
    1. Kahn J.S. The widening scope of coronaviruses. Curr Opin Pediatr. 2006;18(1):42–47.
    1. Resta S., Luby J.P., Rosenfeld C.R. Isolation and propagation of a human enteric coronavirus. Science. 1985;229(4717):978–981.
    1. Burks J.S., DeVald B.L., Jankovsky L.D. Two coronaviruses isolated from central nervous system tissue of two multiple sclerosis patients. Science. 1980;209(4459):933–934.
    1. Murray R.S., Brown B., Brian D. Detection of coronavirus RNA and antigen in multiple sclerosis brain. Ann Neurol. 1992;31(5):525–533.
    1. Stewart J.N., Mounir S., Talbot P.J. Human coronavirus gene expression in the brains of multiple sclerosis patients. Virology. 1992;191(1):502–505.
    1. Arbour N., Day R., Newcombe J. Neuroinvasion by human respiratory coronaviruses. J Virol. 2000;74(19):8913–8921.
    1. Dessau R.B., Lisby G., Frederiksen J.L. Coronaviruses in brain tissue from patients with multiple sclerosis. Acta Neuropathol. 2001;101(6):601–604.
    1. Gilden D.H. Infectious causes of multiple sclerosis. Lancet Neurol. 2005;4(3):195–202.
    1. Bonavia A., Arbour N., Yong V.W. Infection of primary cultures of human neural cells by human coronaviruses 229E and OC43. J Virol. 1997;71(1):800–806.
    1. Jacomy H., Fragoso G., Almazan G. Human coronavirus OC43 infection induces chronic encephalitis leading to disabilities in BALB/C mice. Virology. 2006;349(2):335–346.
    1. Zhao Z., Zhang F., Xu M. Description and clinical treatment of an early outbreak of severe acute respiratory syndrome (SARS) in Guangzhou, PR China. J Med Microbiol. 2003;52:715–720.
    1. Summary of probable SARS cases with onset of illness from November 1, 2002 to July 31, 2003. Available at: Accessed February 9, 2009.
    1. Hon K.L., Leung C.W., Cheng W.T. Clinical presentations and outcome of severe acute respiratory syndrome in children. Lancet. 2003;361(9370):1701–1703.
    1. Cameron M.J., Bermejo-Martin J.F., Danesh A. Human immunopathogenesis of severe acute respiratory syndrome (SARS) Virus Res. 2008;133(1):13–19.
    1. Guo Y., Korteweg C., McNutt M.A. Pathogenetic mechanisms of severe acute respiratory syndrome. Virus Res. 2008;133(1):4–12.
    1. Christian M.D., Poutanen S.M., Loutfy M.R. Severe acute respiratory syndrome. Clin Infect Dis. 2004;38(10):1420–1427.
    1. Perlman S., Dandekar A.A. Immunopathogenesis of coronavirus infections: implications for SARS. Nat Rev Immunol. 2005;5(12):917–927.
    1. Fowler R.A., Lapinsky S.E., Hallett D. Critically ill patients with severe acute respiratory syndrome. JAMA. 2003;290(3):367–373.
    1. Lew T.W., Kwek T.K., Tai D. Acute respiratory distress syndrome in critically ill patients with severe acute respiratory syndrome. JAMA. 2003;290(3):374–380.
    1. Ware L.B., Matthay M.A. The acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1334–1349.
    1. Imai Y., Kuba K., Neely G.G. Identification of oxidative stress and toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell. 2008;133(2):235–249.
    1. Pyrc K., Dijkman R., Deng L. Mosaic structure of human coronavirus NL63, one thousand years of evolution. J Mol Biol. 2006;364(5):964–973.
    1. van der Hoek L., Sure K., Ihorst G. Croup is associated with the novel coronavirus NL63. PLoS Med. 2005;2(8):764–770.
    1. Choi E.H., Lee H.J., Kim S.J. The association of newly identified respiratory viruses with lower respiratory tract infections in Korean children, 2000–2005. Clin Infect Dis. 2006;43(5):585–592.
    1. Han T.H., Chung J.Y., Kim S.W. Human coronavirus-NL63 infections in Korean children, 2004–2006. J Clin Virol. 2007;38(1):27–31.
    1. Wu P.S., Chang L.Y., Berkhout B. Clinical manifestations of human coronavirus NL63 infection in children in Taiwan. Eur J Pediatr. 2008;167(1):75–80.
    1. Esper F., Shapiro E.D., Weibel C. Association between a novel human coronavirus and Kawasaki disease. J Infect Dis. 2005;191(4):499–502.
    1. Shimizu C., Shike H., Baker S.C. Human coronavirus NL63 is not detected in the respiratory tracts of children with acute Kawasaki disease. J Infect Dis. 2005;192(10):1767–1771.
    1. Ebihara T., Endo R., Ma X. Lack of association between New Haven coronavirus and Kawasaki disease. J Infect Dis. 2005;192(2):351–352. [author reply 353]
    1. Belay E.D., Erdman D.D., Anderson L.J. Kawasaki disease and human coronavirus. J Infect Dis. 2005;192(2):352–353. [author reply 353]
    1. Chang L.Y., Chiang B.L., Kao C.L. Lack of association between infection with a novel human coronavirus (HCoV), HCoV-NH, and Kawasaki disease in Taiwan. J Infect Dis. 2006;193(2):283–286.
    1. Dominguez S.R., Anderson M.S., Glode M.P. Blinded case–control study of the relationship between human coronavirus NL63 and Kawasaki syndrome. J Infect Dis. 2006;194(12):1697–1701.
    1. Lehmann C., Klar R., Lindner J. Kawasaki disease lacks association with human coronavirus NL63 and human bocavirus. Pediatr Infect Dis J. 2009;28(6):553–554.
    1. Woo P.C., Lau S.K., Tsoi H.W. Clinical and molecular epidemiological features of coronavirus HKU1-associated community-acquired pneumonia. J Infect Dis. 2005;192(11):1898–1907.
    1. Pyrc K., Berkhout B., van der Hoek L. The novel human coronaviruses NL63 and HKU1. J Virol. 2007;81(7):3051–3057.
    1. Vabret A., Dina J., Gouarin S. Detection of the new human coronavirus HKU1: a report of 6 cases. Clin Infect Dis. 2006;42(5):634–639.
    1. Fredericks D.N., Relman D.A. Sequence-based identification of microbial pathogens: a reconsideration of Koch's postulates. Clin Microbiol Rev. 1996;9(1):18–33.
    1. Jacomy H., Talbot P.J. Vacuolating encephalitis in mice infected by human coronavirus OC43. Virology. 2003;315(1):20–33.
    1. Roberts A., Deming D., Paddock C.D. A mouse-adapted SARS coronavirus causes disease and mortality in BALB/c mice. PLoS Pathog. 2007;3(1):23–37.
    1. Donaldson E.F., Yount B., Sims A.C. Systematic assembly of a full-length infectious clone of human coronavirus NL63. J Virol Dec. 2008;82(23):11948–11957.
    1. Helenius A. Virus entry and uncoating. In: Knipe M.D., Howley P.M., editors. Field's virology. Lippincott Williams & Wilkins; Philadelphia: 2007. pp. 99–118.
    1. Yeager C.L., Ashmun R.A., Williams R.K. Human aminopeptidase N is a receptor for human coronavirus 229E. Nature. 1992;357(6377):420–422.
    1. Li W., Moore M.J., Vasilieva N. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426(6965):450–454.
    1. Kuba K., Imai Y., Rao S. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med. 2005;11(8):875–879.
    1. Hofmann H., Pyrc K., van der Hoek L. Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry. Proc Natl Acad Sci U S A. 2005;102(22):7988–7993.
    1. Turner A.J., Hiscox J.A., Hooper N.M. ACE2: from vasopeptidase to SARS virus receptor. Trends Pharmacol Sci. 2004;25(6):291–294.
    1. Mina-Osorio P. The moonlighting enzyme CD13: old and new functions to target. Trends Mol Med. 2008;14(8):361–371.
    1. Guy J.L., Lambert D.W., Warner F.J. Membrane-associated zinc peptidase families: comparing ACE and ACE2. Biochim Biophys Acta. 2005;1751(1):2–8.
    1. Imai Y., Kuba K., Penninger J.M. The discovery of angiotensin-converting enzyme 2 and its role in acute lung injury in mice. Exp Physiol. 2008;93(5):543–548.
    1. Nomura R., Kiyota A., Suzaki E. Human coronavirus 229E binds to CD13 in rafts and enters the cell through caveolae. J Virol. 2004;78(16):8701–8708.
    1. Wang H., Yang P., Liu K. SARS coronavirus entry into host cells through a novel clathrin- and caveolae-independent endocytic pathway. Cell Res. 2008;18(2):290–301.
    1. Wang S., Guo F., Liu K. Endocytosis of the receptor-binding domain of SARS-CoV spike protein together with virus receptor ACE2. Virus Res. 2008;136:8–15.
    1. Haga S., Yamamoto N., Nakai-Murakami C. Modulation of TNF-alpha converting enzyme by the spike protein of SARS-CoV and ACE2 induces TNF alpha production and facilitates viral entry. Proc Natl Acad Sci U S A. 2008;105(22):7809–7814.
    1. Jia H.P., Look D.C., Tan P. Ectodomain shedding of angiotensin-converting enzyme 2 in human airway epithelia. Am J Physiol Lung Cell Mol Physiol. 2009;297(1):L84–L96.
    1. Le Roy C., Wrana J.L. Clathrin- and nonclathrin-mediated endocytic regulation of cell signaling. Nat Rev Mol Cell Biol. 2005;6(2):112–126.
    1. Marsh M., Helenius A. Virus entry: open sesame. Cell. 2006;124(4):729–740.
    1. Hansen G.H., Delmas B., Besnardeau L. The coronavirus- transmissible gastroenteritis virus causes infection after receptor-mediated endocytosis and acid-dependent fusion with an intracellular compartment. J Virol. 1998;72(1):527–534.
    1. Gredmark S., Britt W.B., Xie X. Human cytomegalovirus induces inhibition of macrophage differentiation by binding to human aminopeptidase N/CD13. J Immunol. 2004;173(8):4897–4907.
    1. Phillips A.J., Tomasec P., Wang E.C. Human cytomegalovirus infection down-regulates expression of the cellular aminopeptidases CD10 and CD13. Virology. 1998;250(2):350–358.
    1. Soderberg C., Giugni T.D., Zaia J.A. CD13 (human aminopeptidase N) mediates human cytomegalovirus infection. J Virol. 1993;67(11):6576–6585.
    1. Isaacson M.K., Feire A.L., Compton T. Epidermal growth factor receptor is not required for human cytomegalovirus entry or signaling. J Virol. 2007;81(12):6241–6247.
    1. Aiken C., Konner J., Landau N.R. Nef induces CD4 endocytosis: requirement for a critical dileucine motif in the membrane-proximal CD4 cytoplasmic domain. Cell. 1994;76(5):853–864.
    1. Schneider-Schaulies J., Schnorr J.J., Brinckmann U. Receptor usage and differential down-regulation of CD46 by measles virus wild-type and vaccine strains. Proc Natl Acad Sci U S A. 1995;92(9):3943–3947.
    1. Marschall M., Meier-Ewert H., Herrler G. The cell receptor level is reduced during persistent infection with influenza C virus. Arch Virol. 1997;142(6):1155–1164.
    1. Santoro F., Kennedy P.E., Locatelli G. CD46 is a cellular receptor for human herpesvirus 6. Cell. 1999;99(7):817–827.
    1. Stoddart C.A., Geleziunas R., Ferrell S. Human immunodeficiency virus type 1 Nef-mediated down-regulation of CD4 correlates with Nef enhancement of viral pathogenesis. J Virol. 2003;77(3):2124–2133.
    1. Michel N., Allespach I., Venzke S. The Nef protein of human immunodeficiency virus establishes superinfection immunity by a dual strategy to down-regulate cell surface CCR5 and CD4. Curr Biol. 2005;15(8):714–723.
    1. Ross T.M., Oran A.E., Cullen B.R. Inhibition of HIV-1 progeny virion release by cell-surface CD4 is relieved by expression of the viral Nef protein. Curr Biol. 1999;9(12):613–621.
    1. Wahl S.M., Allen J.B., Gartner S. HIV-1 and its envelope glycoprotein down-regulate chemotactic ligand receptors and chemotactic function of peripheral blood monocytes. J Immunol. 1989;142(10):3553–3559.
    1. Oldstone M.B., Lewicki H., Thomas D. Measles virus infection in a transgenic model: virus-induced immunosuppression and central nervous system disease. Cell. 1999;98(5):629–640.
    1. Schnorr J.J., Dunster L.M., Nanan R. Measles virus-induced down-regulation of CD46 is associated with enhanced sensitivity to complement-mediated lysis of infected cells. Eur J Immunol. 1995;25(4):976–984.
    1. Imai Y., Kuba K., Rao S. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature. 2005;436(7047):112–116.

Source: PubMed

3
Prenumerera