Recovery of olfactory function induces neuroplasticity effects in patients with smell loss

Kathrin Kollndorfer, Ksenia Kowalczyk, Elisabeth Hoche, Christian A Mueller, Michael Pollak, Siegfried Trattnig, Veronika Schöpf, Kathrin Kollndorfer, Ksenia Kowalczyk, Elisabeth Hoche, Christian A Mueller, Michael Pollak, Siegfried Trattnig, Veronika Schöpf

Abstract

The plasticity of brain function, especially reorganization after stroke or sensory loss, has been investigated extensively. Based upon its special characteristics, the olfactory system allows the investigation of functional networks in patients with smell loss, as it holds the unique ability to be activated by the sensorimotor act of sniffing, without the presentation of an odor. In the present study, subjects with chronic peripheral smell loss and healthy controls were investigated using functional magnetic resonance imaging (fMRI) to compare functional networks in one of the major olfactory areas before and after an olfactory training program. Data analysis revealed that olfactory training induced alterations in functional connectivity networks. Thus, olfactory training is capable of inducing neural reorganization processes. Furthermore, these findings provide evidence for the underlying neural mechanisms of olfactory training.

Figures

Figure 1
Figure 1
Schematic description of experimental procedure.
Figure 2
Figure 2
Functional connectivity during sniffing for anosmic patients before (a) and after (b) the smell training performed over 12 weeks, overlaid on an axial template in MNI space (P = 0.01, uncorrected). The green dot represents the selected ROI (piriform cortex); the red dots capture the statistically significant functionally connected brain areas. (1) Dorsolateral prefrontal cortex (l). (2) Dorsal anterior cortex (l). (3) Inferior frontal gyrus (l). (4) Ventral anterior cortex (l). (5) Premotor cortex (l). (6) Posterior entorhinal cortex (l). (7) Dorsolateral prefrontal cortex (r). (8) Dorsal frontal cortex (r). (9) Dorsolateral prefrontal cortex (r). (10) Ventral anterior cortex (r). (11) Somatosensory association cortex (r). (12) Subgenual cortex (r).

References

    1. Goldstone R. L. Perceptual learning. Annual Review of Psychology. 1998;49:585–612. doi: 10.1146/annurev.psych.49.1.585.
    1. Hubel D. H., Wiesel T. N. The period of susceptibility to the physiological effects of unilateral eye closure in kittens. The Journal of Physiology. 1970;206(2):419–436.
    1. Merabet L. B., Pascual-Leone A. Neural reorganization following sensory loss: the opportunity of change. Nature Reviews Neuroscience. 2010;11(1):44–52. doi: 10.1038/nrn2758.
    1. Gilbert C. D., Sigman M. Brain states: top-down influences in sensory processing. Neuron. 2007;54(5):677–696. doi: 10.1016/j.neuron.2007.05.019.
    1. Mainland J. D., Bremner E. A., Young N., Johnson B. N., Khan R. M., Bensafi M., Sobel N. Olfactory plasticity: one nostril knows what the other learns. Nature. 2002;419(6909, article 802)
    1. Wilson D. A., Best A. R., Sullivan R. M. Plasticity in the olfactory system: lessons for the neurobiology of memory. Neuroscientist. 2004;10(6):513–524. doi: 10.1177/1073858404267048.
    1. Wu K. N., Tan B. K., Howard J. D., Conley D. B., Gottfried J. A. Olfactory input is critical for sustaining odor quality codes in human orbitofrontal cortex. Nature Neuroscience. 2012;15(9):1313–1319. doi: 10.1038/nn.3186.
    1. Doty R. L. Olfaction in Parkinsons disease and related disorders. Neurobiology of Disease. 2012;46(3):527–552. doi: 10.1016/j.nbd.2011.10.026.
    1. Marine N., Boriana A. Olfactory markers of depression and Alzheimer’s disease. Neuroscience & Biobehavioral Reviews. 2014;45C:262–270.
    1. Doty R. L. The olfactory vector hypothesis of neurodegenerative disease: is it viable? Annals of Neurology. 2008;63(1):7–15. doi: 10.1002/ana.21327.
    1. Hummel T., Reden K. R. J., Hähner A., Weidenbecher M., Hüttenbrink K.-B. Effects of olfactory Training in patients with olfactory loss. Laryngoscope. 2009;119(3):496–499. doi: 10.1002/lary.20101.
    1. Damm M., Pikart L. K., Reimann H., Burkert S., Göktas Ö., Haxel B., Frey S., Charalampakis I., Beule A., Renner B., Hummel T., Hüttenbrink K.-B. Olfactory training is helpful in postinfectious olfactory loss: a randomized, controlled, multicenter study. Laryngoscope. 2014;124(4):826–831. doi: 10.1002/lary.24340.
    1. Schriever V. A., Lehmann S., Prange J., Hummel T. Preventing olfactory deterioration: olfactory training may be of help in older people. Journal of the American Geriatrics Society. 2014;62(2):384–386. doi: 10.1111/jgs.12669.
    1. Haehner A., Tosch C., Wolz M., Klingelhoefer L., Fauser M., Storch A., Reichmann H., Hummel T. Olfactory training in patients with Parkinson's disease. PLoS ONE. 2013;8(4) doi: 10.1371/journal.pone.0061680.e61680
    1. Konstantinidis I., Tsakiropoulou E., Bekiaridou P., Kazantzidou C., Constantinidis J. Use of olfactory training in post-traumatic and postinfectious olfactory dysfunction. Laryngoscope. 2013;123(12):E85–E90. doi: 10.1002/lary.24390.
    1. Sobel E. C., Tank D. W. Timing of odor stimulation does not alter patterning of olfactory bulb unit activity in freely breathing rats. Journal of Neurophysiology. 1993;69(4):1331–1337.
    1. Sobel N., Prabhakaran V., Desmond J. E., Glover G. H., Goode R. L., Sullivan E. V., Gabriell J. D. E. Sniffing and smelling: separate subsystems in the human olfactory cortex. Nature. 1998;392(6673):282–286. doi: 10.1038/32654.
    1. Kobal G., Klimek L., Wolfensberger M., et al. Multicenter investigation of 1,036 subjects using a standardized method for the assessment of olfactory function combining tests of odor identification, odor discrimination, and olfactory thresholds. European Archives of Oto-Rhino-Laryngology. 2000;257(4):205–211. doi: 10.1007/s004050050223.
    1. Hummel T., Sekinger B., Wolf S. R., Pauli E., Kobal G. 'Sniffin' sticks'. Olfactory performance assessed by the combined testing of odor identification, odor discrimination and olfactory threshold. Chemical Senses. 1997;22(1):39–52. doi: 10.1093/chemse/22.1.39.
    1. Kobal G., Hummel T., Sekinger B., Barz S., Roscher S., Wolf S. Sniffin “saticks”: acreening of olfactory performance. Rhinology. 1996;34(4):222–226.
    1. Zaitsev M., Hennig J., Speck O. Point spread function mapping with parallel imaging techniques and high acceleration factors: fast, robust, and flexible method for echo-planar imaging distortion correction. Magnetic Resonance in Medicine. 2004;52(5):1156–1166. doi: 10.1002/mrm.20261.
    1. Kareken D. A., Sabri M., Radnovich A. J., Claus E., Foresman B., Hector D., Hutchins G. D. Olfactory system activation from sniffing: effects in piriform and orbitofrontal cortex. NeuroImage. 2004;22(1):456–465. doi: 10.1016/j.neuroimage.2004.01.008.
    1. Whitfield-Gabrieli S., Nieto-Castañon A. Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect. 2012;2:125–141.
    1. Bende M., Nordin S. Perceptual learning in olfaction: professional wine tasters versus controls. Physiology & Behavior. 1997;62(5):1065–1070. doi: 10.1016/S0031-9384(97)00251-5.
    1. Cadiou H., Aoudé I., Tazir B., et al. Postnatal odorant exposure induces peripheral olfactory plasticity at the cellular level. The Journal of Neuroscience. 2014;34(14):4857–4870. doi: 10.1523/JNEUROSCI.0688-13.2014.
    1. Vahdat S., Darainy M., Ostry D. J. Structure of plasticity in human sensory and motor networks due to perceptual learning. Journal of Neuroscience. 2014;34(7):2451–2463. doi: 10.1523/JNEUROSCI.4291-13.2014.
    1. Vidyasagar R., Folger S. E., Parkes L. M. Re-wiring the brain: increased functional connectivity within primary somatosensory cortex following synchronous co-activation. Neuroimage. 2014;92:19–26. doi: 10.1016/j.neuroimage.2014.01.052.
    1. Wilson D. A., Sullivan R. M. Cortical processing of odor objects. Neuron. 2011;72(4):506–519. doi: 10.1016/j.neuron.2011.10.027.
    1. Sobel N., Prabhakaran V., Hartley C. A., Desmond J. E., Zhao Z., Glover G. H., Gabrieli J. D. E., Sullivan E. V. Odorant-induced and sniff-induced activation in the cerebellum of the human. Journal of Neuroscience. 1998;18(21):8990–9001.
    1. Rennaker R. L., Chen C.-F. F., Ruyle A. M., Sloan A. M., Wilson D. A. Spatial and temporal distribution of odorant-evoked activity in the piriform cortex. Journal of Neuroscience. 2007;27(7):1534–1542. doi: 10.1523/JNEUROSCI.4072-06.2007.
    1. Qin W., Xuan Y., Liu Y., Jiang T., Yu C. Functional connectivity density in congenitally and late blind subjects. Cerebral Cortex. 2014 doi: 10.1093/cercor/bhu051.
    1. Bola M., Gall C., Moewes C., Fedorov A., Hinrichs H., Sabel B. A. Brain functional connectivity network breakdown and restoration in blindness. Neurology. 2014;83(6):542–551. doi: 10.1212/WNL.0000000000000672.
    1. Bitter T., Gudziol H., Burmeister H. P., Mentzel H.-J., Guntinas-Lichius O., Gaser C. Anosmia leads to a loss of gray matter in cortical brain areas. Chemical Senses. 2010;35(5):407–415. doi: 10.1093/chemse/bjq028.
    1. Peng P., Gu H., Xiao W., et al. A voxel-based morphometry study of anosmic patients. The British Journal of Radiology. 2013;8620130207
    1. Bitter T., Brüderle J., Gudziol H., Burmeister H. P., Gaser C., Guntinas-Lichius O. Gray and white matter reduction in hyposmic subjects—a voxel-based morphometry study. Brain Research. 2010;1347:42–47. doi: 10.1016/j.brainres.2010.06.003.
    1. Larsson M., Winblad B., Semb H., Amberla K., Wahlund L.-O., Bäckman L. Odor identification in normal aging and early Alzheimer's disease: effects of retrieval support. Neuropsychology. 1999;13(1):47–53. doi: 10.1037/0894-4105.13.1.47.
    1. Zucco G. M., Amodio P., Gatta A. Olfactory deficits in patients affected by minimal hepatic encephalopathy: a pilot study. Chemical Senses. 2006;31(3):273–278. doi: 10.1093/chemse/bjj029.
    1. Hedner M., Larsson M., Arnold N., Zucco G. M., Hummel T. Cognitive factors in odor detection, odor discrimination, and odor identification tasks. Journal of Clinical and Experimental Neuropsychology. 2010;32(10):1062–1067. doi: 10.1080/13803391003683070.

Source: PubMed

3
Prenumerera