Infection as an Environmental Trigger of Multiple Sclerosis Disease Exacerbation

Andrew J Steelman, Andrew J Steelman

Abstract

Over the past several decades, significant advances have been made in identifying factors that contribute to the pathogenesis of multiple sclerosis (MS) and have culminated in the approval of some effective therapeutic strategies for disease intervention. However, the mechanisms by which environmental factors, such as infection, contribute to the pathogenesis and/or symptom exacerbation remain to be fully elucidated. Relapse frequency in MS patients contributes to neurological impairment and, in the initial phases of disease, serves as a predictor of poor disease prognosis. The purpose of this review is to examine the evidence that supports a role for peripheral infection in modulating the natural history of this disease. Evidence supporting a role for infection in promoting exacerbation in animal models of MS is also reviewed. Finally, a few mechanisms by which infection may exacerbate symptoms of MS and other neurological diseases are discussed. Those who comprise the majority of MS patients acquire approximately two upper-respiratory infections per year; furthermore, this type of infection doubles the risk for MS relapse, underscoring the contribution of this relationship as being potentially important and particularly detrimental.

Keywords: multiple sclerosis; natural history; neuroinflammation; relapse; viral infection.

Figures

Figure 1
Figure 1
Potential mechanisms underlying infection induced T-cell activation. (A) Molecular mimicry occurs when there are sufficient overlapping structural similarities between a pathogen-specific peptide and self-peptide such that it triggers T-cell activation. (B) Autoimmunity can be triggered by T-cells possessing both pathogen-specific and autoreactive T-cell receptors (TCR). (C) Bacterial superantigens can crosslink MHC class II and TCR leading to autoreactive T-cell activation and autoimmune disease onset and/or exacerbation. (D) Bystander activation of T-cells by infection could promote exacerbation. Here, infection promotes APC activation leading to the activation of CD44hi polyclonal T-cells via cytokine production. (E) Infection via activation of APCs could drive the process of epitope spreading wherein on constitutively released self-peptides resulting from chronic inflammation are presented to polyclonal autoreactive T-cells.
Figure 2
Figure 2
Model describing how peripheral infection induces neuroinflammation and T-cell-mediated relapse in MS. During peripheral infection, serum acute phase proteins enter the parenchyma at the choroid plexus, cross the BBB via cytokine transporters, or activate afferent nerves causing glial activation (1). Glial activation induces chemokine (2) and cytokine expression that upregulates endothelial adhesion molecules that promote the extravasation of encephalitogenic T-cell and monocyte/dendritic cell trafficking across the BBB (3). T-cells initially encounter resident perivascular meningeal microglia/macrophages, which have been “primed” for optimal antigen presentation (i.e., upregulation of CD86/CD80 and MHCII). T-cell activation stimulates the recruitment of professional APCs (including CCR4+ dendritic cells) and the production of cytotoxic factors, culminating in demyelination and neurodegeneration (4). Abbreviations: APC, antigen-presenting cell; AST, astrocyte; DC, dendritic cell; OL, oligodendrocyte.

References

    1. Compston A, Coles A. Multiple sclerosis. Lancet (2008) 372(9648):1502–17.10.1016/S0140-6736(08)61620-7
    1. Grytten N, Aarseth JH, Lunde HM, Myhr KM. A 60-year follow-up of the incidence and prevalence of multiple sclerosis in Hordaland County, Western Norway. J Neurol Neurosurg Psychiatry (2015).10.1136/jnnp-2014-309906
    1. Anderson DW, Ellenberg JH, Leventhal CM, Reingold SC, Rodriguez M, Silberberg DH. Revised estimate of the prevalence of multiple sclerosis in the United States. Ann Neurol (1992) 31(3):333–6.10.1002/ana.410310317
    1. Hafler DA, Compston A, Sawcer S, Lander ES, Daly MJ, De Jager PL, et al. Risk alleles for multiple sclerosis identified by a genome wide study. N Engl J Med (2007) 357(9):851–62.10.1056/NEJMoa073493
    1. De Jager PL, Jia X, Wang J, de Bakker PI, Ottoboni L, Aggarwal NT, et al. Meta-analysis of genome scans and replication identify CD6, IRF8 and TNFRSF1A as new multiple sclerosis susceptibility loci. Nat Genet (2009) 41(7):776–82.10.1038/ng.401
    1. Hartung HP, Aktas O, Boyko AN. Alemtuzumab: a new therapy for active relapsing-remitting multiple sclerosis. Mult Scler (2015) 21(1):22–34.10.1177/1352458514549398
    1. Polman CH, O’Connor PW, Havrdova E, Hutchinson M, Kappos L, Miller DH, et al. A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med (2006) 354(9):899–910.10.1056/NEJMoa044397
    1. Cross AH, Stark JL, Lauber J, Ramsbottom MJ, Lyons JA. Rituximab reduces B cells and T cells in cerebrospinal fluid of multiple sclerosis patients. J Neuroimmunol (2006) 180(1–2):63–70.10.1016/j.jneuroim.2006.06.029
    1. Hauser SL, Waubant E, Arnold DL, Vollmer T, Antel J, Fox RJ, et al. B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N Engl J Med (2008) 358(7):676–88.10.1056/NEJMoa0706383
    1. Sibley WA, Foley JM. Infection and immunization in multiple sclerosis. Ann N Y Acad Sci (1965) 122:457–66.
    1. Goodkin DE, Hertsgaard D. Seasonal variation of multiple sclerosis exacerbations in North Dakota. Arch Neurol (1989) 46(9):1015–8.10.1001/archneur.1989.00520450085025
    1. Wuthrich R, Rieder HP. The seasonal incidence of multiple sclerosis in Switzerland. Eur Neurol (1970) 3(5):257–64.10.1159/000113977
    1. Muto M, Mori M, Sato Y, Uzawa A, Masuda S, Kuwabara S. Seasonality of multiple sclerosis and neuromyelitis optica exacerbations in Japan. Mult Scler (2013) 19(3):378–9.10.1177/1352458512452332
    1. Auer DP, Schumann EM, Kumpfel T, Gossl C, Trenkwalder C. Seasonal fluctuations of gadolinium-enhancing magnetic resonance imaging lesions in multiple sclerosis. Ann Neurol (2000) 47(2):276–7.10.1002/1531-8249(200002)47:2<276::AID-ANA28>;2-T
    1. Jin Y, de Pedro-Cuesta J, Soderstrom M, Stawiarz L, Link H. Seasonal patterns in optic neuritis and multiple sclerosis: a meta-analysis. J Neurol Sci (2000) 181(1–2):56–64.10.1016/S0022-510X(00)00408-1
    1. Spelman T, Gray O, Trojano M, Petersen T, Izquierdo G, Lugaresi A, et al. Seasonal variation of relapse rate in multiple sclerosis is latitude dependent. Ann Neurol (2014) 76(6):880–90.10.1002/ana.24287
    1. James E, Dobson R, Kuhle J, Baker D, Giovannoni G, Ramagopalan SV. The effect of vitamin D-related interventions on multiple sclerosis relapses: a meta-analysis. Mult Scler (2013) 19(12):1571–9.10.1177/1352458513489756
    1. Andersen O, Lygner PE, Bergstrom T, Andersson M, Vahlne A. Viral infections trigger multiple sclerosis relapses: a prospective seroepidemiological study. J Neurol (1993) 240(7):417–22.10.1007/BF00867354
    1. Kriesel JD, White A, Hayden FG, Spruance SL, Petajan J. Multiple sclerosis attacks are associated with picornavirus infections. Mult Scler (2004) 10(2):145–8.10.1191/1352458504ms1005oa
    1. Kriesel JD, Sibley WA. The case for rhinoviruses in the pathogenesis of multiple sclerosis. Mult Scler (2005) 11(1):1–4.10.1191/1352458505ms1128ed
    1. Kneider M, Bergstrom T, Gustafsson C, Nenonen N, Ahlgren C, Nilsson S, et al. Sequence analysis of human rhinovirus aspirated from the nasopharynx of patients with relapsing-remitting MS. Mult Scler (2009) 15(4):437–42.10.1177/1352458508100038
    1. De Keyser J, Zwanikken C, Boon M. Effects of influenza vaccination and influenza illness on exacerbations in multiple sclerosis. J Neurol Sci (1998) 159(1):51–3.10.1016/S0022-510X(98)00139-7
    1. Sibley WA, Bamford CR, Clark K. Clinical viral infections and multiple sclerosis. Lancet (1985) 1(8441):1313–5.10.1016/S0140-6736(85)92801-6
    1. Correale J, Fiol M, Gilmore W. The risk of relapses in multiple sclerosis during systemic infections. Neurology (2006) 67(4):652–9.10.1212/01.wnl.0000233834.09743.3b
    1. Edwards S, Zvartau M, Clarke H, Irving W, Blumhardt LD. Clinical relapses and disease activity on magnetic resonance imaging associated with viral upper respiratory tract infections in multiple sclerosis. J Neurol Neurosurg Psychiatry (1998) 64(6):736–41.10.1136/jnnp.64.6.736
    1. Monto AS. The seasonality of rhinovirus infections and its implications for clinical recognition. Clin Ther (2002) 24(12):1987–97.10.1016/S0149-2918(02)80093-5
    1. Heikkinen T, Jarvinen A. The common cold. Lancet (2003) 361(9351):51–9.10.1016/S0140-6736(03)12637-2
    1. Monto AS, Malosh RE, Petrie JG, Thompson MG, Ohmit SE. Frequency of acute respiratory illnesses and circulation of respiratory viruses in households with children over 3 surveillance seasons. J Infect Dis (2014) 210(11):1792–9.10.1093/infdis/jiu327
    1. Tremlett H, van der Mei IA, Pittas F, Blizzard L, Paley G, Mesaros D, et al. Monthly ambient sunlight, infections and relapse rates in multiple sclerosis. Neuroepidemiology (2008) 31(4):271–9.10.1159/000166602
    1. Banwell B, Krupp L, Kennedy J, Tellier R, Tenembaum S, Ness J, et al. Clinical features and viral serologies in children with multiple sclerosis: a multinational observational study. Lancet Neurol (2007) 6(9):773–81.10.1016/S1474-4422(07)70196-5
    1. Pohl D, Krone B, Rostasy K, Kahler E, Brunner E, Lehnert M, et al. High seroprevalence of Epstein-Barr virus in children with multiple sclerosis. Neurology (2006) 67(11):2063–5.10.1212/01.wnl.0000247665.94088.8d
    1. Alotaibi S, Kennedy J, Tellier R, Stephens D, Banwell B. Epstein-Barr virus in pediatric multiple sclerosis. JAMA (2004) 291(15):1875–9.10.1001/jama.291.15.1875
    1. Simpson S, Jr, Taylor B, Burrows J, Burrows S, Dwyer DE, Taylor J, et al. EBV & HHV6 reactivation is infrequent and not associated with MS clinical course. Acta Neurol Scand (2014) 130(5):328–37.10.1111/ane.12268
    1. Buljevac D, van Doornum GJ, Flach HZ, Groen J, Osterhaus AD, Hop W, et al. Epstein-Barr virus and disease activity in multiple sclerosis. J Neurol Neurosurg Psychiatry (2005) 76(10):1377–81.10.1136/jnnp.2004.048504
    1. Horakova D, Zivadinov R, Weinstock-Guttman B, Havrdova E, Qu J, Tamano-Blanco M, et al. Environmental factors associated with disease progression after the first demyelinating event: results from the multi-center SET study. PLoS One (2013) 8(1):e53996.10.1371/journal.pone.0053996
    1. Kvistad S, Myhr KM, Holmoy T, Bakke S, Beiske AG, Bjerve KS, et al. Antibodies to Epstein-Barr virus and MRI disease activity in multiple sclerosis. Mult Scler (2014) 20(14):1833–40.10.1177/1352458514533843
    1. Lindsey JW, Hatfield LM, Crawford MP, Patel S. Quantitative PCR for Epstein-Barr virus DNA and RNA in multiple sclerosis. Mult Scler (2009) 15(2):153–8.10.1177/1352458508097920
    1. Latham LB, Lee MJ, Lincoln JA, Ji N, Forsthuber TG, Lindsey JW. Antivirus immune activity in multiple sclerosis correlates with MRI activity. Acta Neurol Scand (2015).10.1111/ane.12417
    1. Pender MP, Csurhes PA, Smith C, Beagley L, Hooper KD, Raj M, et al. Epstein-Barr virus-specific adoptive immunotherapy for progressive multiple sclerosis. Mult Scler (2014) 20(11):1541–4.10.1177/1352458514521888
    1. Ordonez G, Pineda B, Garcia-Navarrete R, Sotelo J. Brief presence of varicella-zoster vral DNA in mononuclear cells during relapses of multiple sclerosis. Arch Neurol (2004) 61(4):529–32.10.1001/archneur.61.4.529
    1. Sotelo J, Ordonez G, Pineda B. Varicella-zoster virus at relapses of multiple sclerosis. J Neurol (2007) 254(4):493–500.10.1007/s00415-006-0402-x
    1. Sotelo J, Martinez-Palomo A, Ordonez G, Pineda B. Varicella-zoster virus in cerebrospinal fluid at relapses of multiple sclerosis. Ann Neurol (2008) 63(3):303–11.10.1002/ana.21316
    1. Burgoon MP, Cohrs RJ, Bennett JL, Anderson SW, Ritchie AM, Cepok S, et al. Varicella zoster virus is not a disease-relevant antigen in multiple sclerosis. Ann Neurol (2009) 65(4):474–9.10.1002/ana.21605
    1. Hon GM, Erasmus RT, Matsha T. Low prevalence of human herpesvirus-6 and varicella zoster virus in blood of multiple sclerosis patients, irrespective of inflammatory status or disease progression. J Clin Neurosci (2014) 21(8):1437–40.10.1016/j.jocn.2013.10.027
    1. Leibovitch EC, Jacobson S. Evidence linking HHV-6 with multiple sclerosis: an update. Curr Opin Virol (2014) 9c:127–33.10.1016/j.coviro.2014.09.016
    1. Chapenko S, Millers A, Nora Z, Logina I, Kukaine R, Murovska M. Correlation between HHV-6 reactivation and multiple sclerosis disease activity. J Med Virol (2003) 69(1):111–7.10.1002/jmv.10258
    1. Kuusisto H, Hyoty H, Kares S, Kinnunen E, Elovaara I. Human herpes virus 6 and multiple sclerosis: a Finnish twin study. Mult Scler (2008) 14(1):54–8.10.1177/1352458507080063
    1. Taus C, Pucci E, Cartechini E, Fie A, Giuliani G, Clementi M, et al. Absence of HHV-6 and HHV-7 in cerebrospinal fluid in relapsing-remitting multiple sclerosis. Acta Neurol Scand (2000) 101(4):224–8.10.1034/j.1600-0404.2000.09001.x
    1. Buljevac D, Verkooyen RP, Jacobs BC, Hop W, van der Zwaan LA, van Doorn PA, et al. Chlamydia pneumoniae and the risk for exacerbation in multiple sclerosis patients. Ann Neurol (2003) 54(6):828–31.10.1002/ana.10759
    1. Mulvey MR, Doupe M, Prout M, Leong C, Hizon R, Grossberndt A, et al. Staphylococcus aureus harbouring enterotoxin A as a possible risk factor for multiple sclerosis exacerbations. Mult Scler (2011) 17(4):397–403.10.1177/1352458510391343
    1. Lipton HL. Theiler’s virus infection in mice: an unusual biphasic disease process leading to demyelination. Infect Immun (1975) 11(5):1147–55.
    1. Lipton HL, Dal Canto MC. Theiler’s virus-induced demyelination: prevention by immunosuppression. Science (1976) 192(4234):62–4.10.1126/science.176726
    1. Lipton HL, Dal Canto MC. Chronic neurologic disease in Theiler’s virus infection of SJL/J mice. J Neurol Sci (1976) 30(1):201–7.10.1016/0022-510X(76)90267-7
    1. McMahon EJ, Bailey SL, Castenada CV, Waldner H, Miller SD. Epitope spreading initiates in the CNS in two mouse models of multiple sclerosis. Nat Med (2005) 11(3):335–9.10.1038/nm1202
    1. Oleszak EL, Chang JR, Friedman H, Katsetos CD, Platsoucas CD. Theiler’s virus infection: a model for multiple sclerosis. Clin Microbiol Rev (2004) 17(1):174–207.10.1128/CMR.17.1.174-207.2004
    1. Stohlman SA, Hinton DR. Viral induced demyelination. Brain Pathol (2001) 11(1):92–106.10.1111/j.1750-3639.2001.tb00384.x
    1. Terry RL, Ifergan I, Miller SD. Experimental autoimmune encephalomyelitis in mice. Methods in Mol Biol. (2016) 1304:145–60.10.1007/7651_2014_88
    1. Stromnes IM, Goverman JM. Passive induction of experimental allergic encephalomyelitis. Nat Protoc (2006) 1(4):1952–60.10.1038/nprot.2006.284
    1. Rangachari M, Kuchroo VK. Using EAE to better understand principles of immune function and autoimmune pathology. J Autoimmun (2013) 45:31–9.10.1016/j.jaut.2013.06.008
    1. Blakemore WF, Franklin RJ. Remyelination in experimental models of toxin-induced demyelination. Curr Top Microbiol Immunol (2008) 318:193–212.
    1. Blakemore WF. Observations on oligodendrocyte degeneration, the resolution of status spongiosus and remyelination in cuprizone intoxication in mice. J Neurocytol (1972) 1(4):413–26.10.1007/BF01102943
    1. Wu QZ, Yang Q, Cate HS, Kemper D, Binder M, Wang HX, et al. MRI identification of the rostral-caudal pattern of pathology within the corpus callosum in the cuprizone mouse model. J Magn Reson Imaging (2008) 27(3):446–53.10.1002/jmri.21111
    1. Steelman AJ, Thompson JP, Li J. Demyelination and remyelination in anatomically distinct regions of the corpus callosum following cuprizone intoxication. Neurosci Res (2012) 72(1):32–42.10.1016/j.neures.2011.10.002
    1. Groebe A, Clarner T, Baumgartner W, Dang J, Beyer C, Kipp M. Cuprizone treatment induces distinct demyelination, astrocytosis, and microglia cell invasion or proliferation in the mouse cerebellum. Cerebellum (2009) 8(3):163–74.10.1007/s12311-009-0099-3
    1. Kondo A, Nakano T, Suzuki K. Blood-brain barrier permeability to horseradish peroxidase in twitcher and cuprizone-intoxicated mice. Brain Res (1987) 425(1):186–90.10.1016/0006-8993(87)90499-9
    1. Blakemore WF. Remyelination of the superior cerebellar peduncle in the mouse following demyelination induced by feeding cuprizone. J Neurol Sci (1973) 20(1):73–83.10.1016/0022-510X(73)90119-6
    1. Ludwin SK. Central nervous system demyelination and remyelination in the mouse: an ultrastructural study of cuprizone toxicity. Lab Invest (1978) 39(6):597–612.
    1. Praet J, Guglielmetti C, Berneman Z, Van der Linden A, Ponsaerts P. Cellular and molecular neuropathology of the cuprizone mouse model: clinical relevance for multiple sclerosis. Neurosci Biobehav Rev (2014) 47c:485–505.10.1016/j.neubiorev.2014.10.004
    1. Zhao ZS, Granucci F, Yeh L, Schaffer PA, Cantor H. Molecular mimicry by herpes simplex virus-type 1: autoimmune disease after viral infection. Science (1998) 279(5355):1344–7.10.1126/science.279.5355.1344
    1. Olson JK, Croxford JL, Calenoff MA, Dal Canto MC, Miller SD. A virus-induced molecular mimicry model of multiple sclerosis. J Clin Invest (2001) 108(2):311–8.10.1172/JCI200113032
    1. Wucherpfennig KW, Strominger JL. Molecular mimicry in T cell-mediated autoimmunity: viral peptides activate human T cell clones specific for myelin basic protein. Cell (1995) 80(5):695–705.10.1016/0092-8674(95)90348-8
    1. Harkiolaki M, Holmes SL, Svendsen P, Gregersen JW, Jensen LT, McMahon R, et al. T cell-mediated autoimmune disease due to low-affinity crossreactivity to common microbial peptides. Immunity (2009) 30(3):348–57.10.1016/j.immuni.2009.01.009
    1. Reynolds CJ, Sim MJ, Quigley KJ, Altmann DM, Boyton RJ. Autoantigen cross-reactive environmental antigen can trigger multiple sclerosis-like disease. J Neuroinflammation (2015) 12(1):91.10.1186/s12974-015-0313-9
    1. Ji Q, Perchellet A, Goverman JM. Viral infection triggers central nervous system autoimmunity via activation of CD8+ T cells expressing dual TCRs. Nat Immunol (2010) 11(7):628–34.10.1038/ni.1888
    1. Tough DF, Sun S, Sprent J. T cell stimulation in vivo by lipopolysaccharide (LPS). J Exp Med (1997) 185(12):2089–94.10.1084/jem.185.12.2089
    1. Tough DF, Borrow P, Sprent J. Induction of bystander T cell proliferation by viruses and type I interferon in vivo. Science (1996) 272(5270):1947–50.10.1126/science.272.5270.1947
    1. Judge AD, Zhang X, Fujii H, Surh CD, Sprent J. Interleukin 15 controls both proliferation and survival of a subset of memory-phenotype CD8(+) T cells. J Exp Med (2002) 196(7):935–46.10.1084/jem.20020772
    1. Brocke S, Gaur A, Piercy C, Gautam A, Gijbels K, Fathman CG, et al. Induction of relapsing paralysis in experimental autoimmune encephalomyelitis by bacterial superantigen. Nature (1993) 365(6447):642–4.10.1038/365642a0
    1. Schiffenbauer J, Johnson HM, Butfiloski EJ, Wegrzyn L, Soos JM. Staphylococcal enterotoxins can reactivate experimental allergic encephalomyelitis. Proc Natl Acad Sci U S A (1993) 90(18):8543–6.10.1073/pnas.90.18.8543
    1. Franca TG, Chiuso-Minicucci F, Zorzella-Pezavento SF, Ishikawa LL, da Rosa LC, Colavite PM, et al. Previous infection with Staphylococcus aureus strains attenuated experimental encephalomyelitis. BMC Neurosci (2014) 15:8.10.1186/1471-2202-15-8
    1. Peacock JW, Elsawa SF, Petty CC, Hickey WF, Bost KL. Exacerbation of experimental autoimmune encephalomyelitis in rodents infected with murine gammaherpesvirus-68. Eur J Immunol (2003) 33(7):1849–58.10.1002/eji.200323148
    1. Casiraghi C, Shanina I, Cho S, Freeman ML, Blackman MA, Horwitz MS. Gammaherpesvirus latency accentuates EAE pathogenesis: relevance to Epstein-Barr virus and multiple sclerosis. PLoS Pathog (2012) 8(5):e1002715.10.1371/journal.ppat.1002715
    1. Pullen LC, Park SH, Miller SD, Dal Canto MC, Kim BS. Treatment with bacterial LPS renders genetically resistant C57BL/6 mice susceptible to Theiler’s virus-induced demyelinating disease. J Immunol (1995) 155(9):4497–503.
    1. Kim BS, Jin YH, Meng L, Hou W, Kang HS, Park HS, et al. IL-1 signal affects both protection and pathogenesis of virus-induced chronic CNS demyelinating disease. J Neuroinflammation (2012) 9(1):217.10.1186/1742-2094-9-217
    1. Hiremath MM, Saito Y, Knapp GW, Ting JP, Suzuki K, Matsushima GK. Microglial/macrophage accumulation during cuprizone-induced demyelination in C57BL/6 mice. J Neuroimmunol (1998) 92(1–2):38–49.10.1016/S0165-5728(98)00168-4
    1. Urbach-Ross D, Kusnecov AW. Effects of acute and repeated exposure to lipopolysaccharide on cytokine and corticosterone production during remyelination. Brain Behav Immun (2007) 21(7):962–74.10.1016/j.bbi.2007.03.010
    1. Skripuletz T, Miller E, Grote L, Gudi V, Pul R, Voss E, et al. Lipopolysaccharide delays demyelination and promotes oligodendrocyte precursor proliferation in the central nervous system. Brain Behav Immun (2011) 25(8):1592–606.10.1016/j.bbi.2011.05.009
    1. Linker RA, Maurer M, Gaupp S, Martini R, Holtmann B, Giess R, et al. CNTF is a major protective factor in demyelinating CNS disease: a neurotrophic cytokine as modulator in neuroinflammation. Nat Med (2002) 8(6):620–4.10.1038/nm0602-620
    1. Albrecht PJ, Enterline JC, Cromer J, Levison SW. CNTF-activated astrocytes release a soluble trophic activity for oligodendrocyte progenitors. Neurochem Res (2007) 32(2):263–71.10.1007/s11064-006-9151-6
    1. Vernerey J, Macchi M, Magalon K, Cayre M, Durbec P. Ciliary neurotrophic factor controls progenitor migration during remyelination in the adult rodent brain. J Neurosci (2013) 33(7):3240–50.10.1523/JNEUROSCI.2579-12.2013
    1. Emery B, Cate HS, Marriott M, Merson T, Binder MD, Snell C, et al. Suppressor of cytokine signaling 3 limits protection of leukemia inhibitory factor receptor signaling against central demyelination. Proc Natl Acad Sci U S A (2006) 103(20):7859–64.10.1073/pnas.0602574103
    1. Ishibashi T, Lee PR, Baba H, Fields RD. Leukemia inhibitory factor regulates the timing of oligodendrocyte development and myelination in the postnatal optic nerve. J Neurosci Res (2009) 87(15):3343–55.10.1002/jnr.22173
    1. Deverman BE, Patterson PH. Exogenous leukemia inhibitory factor stimulates oligodendrocyte progenitor cell proliferation and enhances hippocampal remyelination. J Neurosci (2012) 32(6):2100–9.10.1523/JNEUROSCI.3803-11.2012
    1. Zhang Y, Taveggia C, Melendez-Vasquez C, Einheber S, Raine CS, Salzer JL, et al. Interleukin-11 potentiates oligodendrocyte survival and maturation, and myelin formation. J Neurosci (2006) 26(47):12174–85.10.1523/JNEUROSCI.2289-06.2006
    1. Zhang J, Zhang Y, Dutta DJ, Argaw AT, Bonnamain V, Seto J, et al. Proapoptotic and antiapoptotic actions of Stat1 versus Stat3 underlie neuroprotective and immunoregulatory functions of IL-11. J Immunol (2011) 187(3):1129–41.10.4049/jimmunol.1004066
    1. Moreno B, Jukes JP, Vergara-Irigaray N, Errea O, Villoslada P, Perry VH, et al. Systemic inflammation induces axon injury during brain inflammation. Ann Neurol (2011) 70(6):932–42.10.1002/ana.22550
    1. Crisi GM, Santambrogio L, Hochwald GM, Smith SR, Carlino JA, Thorbecke GJ. Staphylococcal enterotoxin B and tumor-necrosis factor-alpha-induced relapses of experimental allergic encephalomyelitis: protection by transforming growth factor-beta and interleukin-10. Eur J Immunol (1995) 25(11):3035–40.10.1002/eji.1830251108
    1. Soos JM, Schiffenbauer J, Johnson HM. Treatment of PL/J mice with the superantigen, staphylococcal enterotoxin B, prevents development of experimental allergic encephalomyelitis. J Neuroimmunol (1993) 43(1–2):39–43.10.1016/0165-5728(93)90073-8
    1. Soos JM, Hobeika AC, Butfiloski EJ, Schiffenbauer J, Johnson HM. Accelerated induction of experimental allergic encephalomyelitis in PL/J mice by a non-V beta 8-specific superantigen. Proc Natl Acad Sci U S A (1995) 92(13):6082–6.10.1073/pnas.92.13.6082
    1. Wang Y, Telesford KM, Ochoa-Reparaz J, Haque-Begum S, Christy M, Kasper EJ, et al. An intestinal commensal symbiosis factor controls neuroinflammation via TLR2-mediated CD39 signalling. Nat Commun (2014) 5:4432.10.1038/ncomms5432
    1. Nichols FC, Housley WJ, O’Conor CA, Manning T, Wu S, Clark RB. Unique lipids from a common human bacterium represent a new class of toll-like receptor 2 ligands capable of enhancing autoimmunity. Am J Pathol (2009) 175(6):2430–8.10.2353/ajpath.2009.090544
    1. Berer K, Mues M, Koutrolos M, Rasbi ZA, Boziki M, Johner C, et al. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature (2011) 479(7374):538–41.10.1038/nature10554
    1. Goverman J, Woods A, Larson L, Weiner LP, Hood L, Zaller DM. Transgenic mice that express a myelin basic protein-specific T cell receptor develop spontaneous autoimmunity. Cell (1993) 72(4):551–60.10.1016/0092-8674(93)90074-Z
    1. Waldner H, Whitters MJ, Sobel RA, Collins M, Kuchroo VK. Fulminant spontaneous autoimmunity of the central nervous system in mice transgenic for the myelin proteolipid protein-specific T cell receptor. Proc Natl Acad Sci U S A (2000) 97(7):3412–7.10.1073/pnas.97.7.3412
    1. Waldner H, Collins M, Kuchroo VK. Activation of antigen-presenting cells by microbial products breaks self tolerance and induces autoimmune disease. J Clin Invest (2004) 113(7):990–7.10.1172/JCI19388
    1. Bettelli E, Pagany M, Weiner HL, Linington C, Sobel RA, Kuchroo VK. Myelin oligodendrocyte glycoprotein-specific T cell receptor transgenic mice develop spontaneous autoimmune optic neuritis. J Exp Med (2003) 197(9):1073–81.10.1084/jem.20021603
    1. Greter M, Heppner FL, Lemos MP, Odermatt BM, Goebels N, Laufer T, et al. Dendritic cells permit immune invasion of the CNS in an animal model of multiple sclerosis. Nat Med (2005) 11(3):328–34.10.1038/nm1197
    1. Nelson RW, Beisang D, Tubo NJ, Dileepan T, Wiesner DL, Nielsen K, et al. T cell receptor cross-reactivity between similar foreign and self peptides influences naive cell population size and autoimmunity. Immunity (2015) 42(1):95–107.10.1016/j.immuni.2015.06.007
    1. Odoardi F, Sie C, Streyl K, Ulaganathan VK, Schlager C, Lodygin D, et al. T cells become licensed in the lung to enter the central nervous system. Nature (2012) 488(7413):675–9.10.1038/nature11337
    1. Sun D, Newman TA, Perry VH, Weller RO. Cytokine-induced enhancement of autoimmune inflammation in the brain and spinal cord: implications for multiple sclerosis. Neuropathol Appl Neurobiol (2004) 30(4):374–84.10.1111/j.1365-2990.2003.00546.x
    1. Serres S, Anthony DC, Jiang Y, Broom KA, Campbell SJ, Tyler DJ, et al. Systemic inflammatory response reactivates immune-mediated lesions in rat brain. J Neurosci (2009) 29(15):4820–8.10.1523/JNEUROSCI.0406-09.2009
    1. Serres S, Bristow C, de Pablos RM, Merkler D, Soto MS, Sibson NR, et al. Magnetic resonance imaging reveals therapeutic effects of interferon-beta on cytokine-induced reactivation of rat model of multiple sclerosis. J Cereb Blood Flow Metab (2013) 33(5):744–53.10.1038/jcbfm.2013.12
    1. Johnson RW. Feeding the beast: can microglia in the senescent brain be regulated by diet? Brain Behav Immun (2015) 43:1–8.10.1016/j.bbi.2014.09.022
    1. Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci (2008) 9(1):46–56.10.1038/nrn2297
    1. Popescu BF, Lucchinetti CF. Pathology of demyelinating diseases. Annu Rev Pathol (2012) 7:185–217.10.1146/annurev-pathol-011811-132443
    1. Raz E, Loh JP, Saba L, Omari M, Herbert J, Lui Y. Periventricular lesions help differentiate neuromyelitis optica spectrum disorders from multiple sclerosis. Mult Scler Int (2014) 2014:986923.10.1155/2014/986923
    1. Villares R, Cadenas V, Lozano M, Almonacid L, Zaballos A, Martinez AC, et al. CCR6 regulates EAE pathogenesis by controlling regulatory CD4+ T-cell recruitment to target tissues. Eur J Immunol (2009) 39(6):1671–81.10.1002/eji.200839123
    1. Reboldi A, Coisne C, Baumjohann D, Benvenuto F, Bottinelli D, Lira S, et al. C-C chemokine receptor 6-regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE. Nat Immunol (2009) 10(5):514–23.10.1038/ni.1716
    1. Dumas A, Amiable N, de Rivero Vaccari JP, Chae JJ, Keane RW, Lacroix S, et al. The inflammasome pyrin contributes to pertussis toxin-induced IL-1beta synthesis, neutrophil intravascular crawling and autoimmune encephalomyelitis. PLoS Pathog (2014) 10(5):e1004150.10.1371/journal.ppat.1004150
    1. Parker Harp CR, Archambault AS, Sim J, Ferris ST, Mikesell RJ, Koni PA, et al. B cell antigen presentation is sufficient to drive neuroinflammation in an animal model of multiple sclerosis. J Immunol (2015) 194(11):5077–84.10.4049/jimmunol.1402236
    1. Heppner FL, Greter M, Marino D, Falsig J, Raivich G, Hovelmeyer N, et al. Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nat Med (2005) 11(2):146–52.10.1038/nm0405-455
    1. Sosa RA, Murphey C, Ji N, Cardona AE, Forsthuber TG. The kinetics of myelin antigen uptake by myeloid cells in the central nervous system during experimental autoimmune encephalomyelitis. J Immunol (2013) 191(12):5848–57.10.4049/jimmunol.1300771
    1. Pesic M, Bartholomaus I, Kyratsous NI, Heissmeyer V, Wekerle H, Kawakami N. 2-photon imaging of phagocyte-mediated T cell activation in the CNS. J Clin Invest (2013) 123(3):1192–201.10.1172/JCI67233
    1. Bartholomaus I, Kawakami N, Odoardi F, Schlager C, Miljkovic D, Ellwart JW, et al. Effector T cell interactions with meningeal vascular structures in nascent autoimmune CNS lesions. Nature (2009) 462(7269):94–8.10.1038/nature08478
    1. Goldmann T, Wieghofer P, Muller PF, Wolf Y, Varol D, Yona S, et al. A new type of microglia gene targeting shows TAK1 to be pivotal in CNS autoimmune inflammation. Nat Neurosci (2013) 16(11):1618–26.10.1038/nn.3531
    1. Jurgens HA, Amancherla K, Johnson RW. Influenza infection induces neuroinflammation, alters hippocampal neuron morphology, and impairs cognition in adult mice. J Neurosci (2012) 32(12):3958–68.10.1523/JNEUROSCI.6389-11.2012
    1. Konat GW, Borysiewicz E, Fil D, James I. Peripheral challenge with double-stranded RNA elicits global up-regulation of cytokine gene expression in the brain. J Neurosci Res (2009) 87(6):1381–8.10.1002/jnr.21958
    1. Michalovicz LT, Konat GW. Peripherally restricted acute phase response to a viral mimic alters hippocampal gene expression. Metab Brain Dis (2014) 29(1):75–86.10.1007/s11011-013-9471-6
    1. Steelman AJ, Li J. Poly(I:C) promotes TNFalpha/TNFR1-dependent oligodendrocyte death in mixed glial cultures. J Neuroinflammation (2011) 8:89.10.1186/1742-2094-8-89
    1. Kim RY, Hoffman AS, Itoh N, Ao Y, Spence R, Sofroniew MV, et al. Astrocyte CCL2 sustains immune cell infiltration in chronic experimental autoimmune encephalomyelitis. J Neuroimmunol (2014) 274(1–2):53–61.10.1016/j.jneuroim.2014.06.009
    1. Hedstrom AK, Baarnhielm M, Olsson T, Alfredsson L. Exposure to environmental tobacco smoke is associated with increased risk for multiple sclerosis. Mult Scler (2011) 17(7):788–93.10.1177/1352458511399610
    1. Sundqvist E, Sundstrom P, Linden M, Hedstrom AK, Aloisi F, Hillert J, et al. Lack of replication of interaction between EBNA1 IgG and smoking in risk for multiple sclerosis. Neurology (2012) 79(13):1363–8.10.1212/WNL.0b013e31826c1ab7
    1. Hedstrom AK, Hillert J, Olsson T, Alfredsson L. Nicotine might have a protective effect in the etiology of multiple sclerosis. Mult Scler (2013) 19(8):1009–13.10.1177/1352458512471879

Source: PubMed

3
Prenumerera