Semi-Mechanistic Pharmacokinetic-Pharmacodynamic Model of Camostat Mesylate-Predicted Efficacy against SARS-CoV-2 in COVID-19

Yuri Kosinsky, Kirill Peskov, Donald R Stanski, Diana Wetmore, Joseph Vinetz, Yuri Kosinsky, Kirill Peskov, Donald R Stanski, Diana Wetmore, Joseph Vinetz

Abstract

The SARS-CoV-2 coronavirus, which causes COVID-19, uses a viral surface spike protein for host cell entry and the human cell-surface transmembrane serine protease, TMPRSS2, to process the spike protein. Camostat mesylate, an orally available and clinically used serine protease inhibitor, inhibits TMPRSS2, supporting clinical trials to investigate its use in COVID-19. A one-compartment pharmacokinetic (PK)/pharmacodynamic (PD) model for camostat and the active metabolite FOY-251 was developed, incorporating TMPRSS2 reversible covalent inhibition by FOY-251, and empirical equations linking TMPRSS2 inhibition of SARS-CoV-2 cell entry. The model predicts that 95% inhibition of TMPRSS2 is required for 50% inhibition of viral entry efficiency. For camostat 200 mg dosed four times daily, 90% inhibition of TMPRSS2 is predicted to occur but with only about 40% viral entry inhibition. For 3-fold higher camostat dosing, marginal improvement of viral entry rate inhibition, up to 54%, is predicted. Because respiratory tract viral load may be associated with negative outcome, even modestly reducing viral entry and respiratory tract viral load may reduce disease progression. This modeling also supports medicinal chemistry approaches to enhancing PK/PD and potency of the camostat molecule. IMPORTANCE Strategies to repurpose already-approved drugs for the treatment of COVID-19 has been attractive since the beginning of the pandemic. Camostat mesylate, a serine protease inhibitor approved in Japan for the treatment of acute exacerbations of chronic pancreatitis, inhibits TMPRSS1, a host cell surface serine protease essential for SARS-CoV-2 viral entry. In vitro experiments provided data suggesting that camostat might be effective in the treatment of COVID-19. Multiple clinical trials were planned to test the hypothesis that camostat would be beneficial for treating COVID-19 (for example, clinicaltrials.gov, NCT04353284). The present work used a one-compartment pharmacokinetic (PK)/pharmacodynamic (PD) mathematical model for camostat and the active metabolite FOY-251, incorporating TMPRSS2 reversible covalent inhibition by FOY-251, and empirical equations linking TMPRSS2 inhibition of SARS-CoV-2 cell entry. This work is valuable to guide further development of camostat mesylate and possible medicinal chemistry derivatives for the treatment of COVID-19.

Keywords: COVID-19; antiviral pharmacology; camostat.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

FIG 1
FIG 1
The model schemes. (A) Biological model of targeting SARS CoV-2 cell entry through the TMPRSS2 inhibition. (B) Pharmacokinetic model for Camostat/FOY-251. Very fast transformation of Camostat mesylate into the active metabolite FOY-251 in physiological fluids is assumed. (C) Pharmacodynamic TMPRSS2 inhibition model (in vivo). The model considers TMPRSS2 synthesis (ksynt) and degradation rates (kdeg). TMPRSS2 inhibition by FOY-251 is considered as two-stage process: (i) 374 reversible binding (parameter Ki) of the drug, and (ii) the drug covalent binding to the target residue (kcat). The recovery of TMPRSS2 activity (with inactive metabolite [GBA] molecule release from active center) is described by parameter kdis (half-life of SPi state is about 14 h). For TMPRSS2 in vivo model ksynt was calculated based on kdeg value(assumed) and SP baseline level = 1.
FIG 2
FIG 2
FOY-251 Pharmacodynamic models fitted to the data of in vitro experiments of M. Hoffman et al. (18). (A) Recombinant TMPRSS2 activity (relative to control) versus FOY-251 concentration, incubation time 1 h. (B) Viral entry rate (relative to control) versus FOY-251 concentration, incubation time 2 h. (C) Viral entry rate dependence (from panel B) on the respective model predicted TMPRSS2 activity, incubation time 2 h. The model predictions are shown by solid lines with 90% CIs (gray-color filled bars), the data from in vitro experiments (digitized from [18]) are shown by black filled circles.
FIG 3
FIG 3
Predicted pharmacokinetic models, TMPRSS2 activity, and viral entry rate at different camostat doses. The PK model predictions (FOY-251 in plasma) are shown in the top panel by red solid lines with 90% CIs shown by filled bars. The predictions for TMPRSS2 activity (middle panel, green solid lines) and viral entry rate (bottom panel, blue solid lines) are shown with 90% CIs shown by filled bars. (A) camostat 200 mg q6h; (B) camostat 600 mg q6h; (C) camostat 600 mg q6h with two times slower.

References

    1. Vijayvargiya P, Esquer Garrigos Z, Castillo Almeida NE, Gurram PR, Stevens RW, Razonable RR. 2020. Treatment considerations for COVID-19: a critical review of the evidence (or lack thereof). Mayo Clin Proc 95:1454–1466. doi:10.1016/j.mayocp.2020.04.027.
    1. Cohen MS, Wohl DA, Fischer WA, Smith DM, Eron JJ. 2021. Outpatient treatment of SARS-CoV-2 infection to prevent COVID-19 progression. Clin Infect Dis 73:1717–1721. doi:10.1093/cid/ciab494.
    1. Zhao H, To KKW, Lam H, Zhou X, Chan JF-W, Peng Z, Lee ACY, Cai J, Chan W-M, Ip JD, Chan CC-S, Yeung ML, Zhang AJ, Chu AWH, Jiang S, Yuen K-Y. 2021. Cross-linking peptide and repurposed drugs inhibit both entry pathways of SARS-CoV-2. Nat Commun 12:1517. doi:10.1038/s41467-021-21825-w.
    1. Beigel JH, Tomashek KM, Dodd LE, Mehta AK, Zingman BS, Kalil AC, Hohmann E, Chu HY, Luetkemeyer A, Kline S, Lopez de Castilla D, Finberg RW, Dierberg K, Tapson V, Hsieh L, Patterson TF, Paredes R, Sweeney DA, Short WR, Touloumi G, Lye DC, Ohmagari N, Oh M-d, Ruiz-Palacios GM, Benfield T, Fätkenheuer G, Kortepeter MG, Atmar RL, Creech CB, Lundgren J, Babiker AG, Pett S, Neaton JD, Burgess TH, Bonnett T, Green M, Makowski M, Osinusi A, Nayak S, Lane HC. 2020. Remdesivir for the treatment of COVID-19 — final report. N Engl J Med 383:1813–1826. doi:10.1056/NEJMoa2007764.
    1. Spinner CD, Gottlieb RL, Criner GJ, Arribas López JR, Cattelan AM, Soriano Viladomiu A, Ogbuagu O, Malhotra P, Mullane KM, Castagna A, Chai LYA, Roestenberg M, Tsang OTY, Bernasconi E, Le Turnier P, Chang S-C, SenGupta D, Hyland RH, Osinusi AO, Cao H, Blair C, Wang H, Gaggar A, Brainard DM, McPhail MJ, Bhagani S, Ahn MY, Sanyal AJ, Huhn G, Marty FM, GS-US-540–5774 Investigators. 2020. Effect of remdesivir vs standard care on clinical status at 11 days in patients with moderate COVID-19: a randomized clinical trial. JAMA 324:1048–1057. doi:10.1001/jama.2020.16349.
    1. Goldman JD, Lye DCB, Hui DS, Marks KM, Bruno R, Montejano R, Spinner CD, Galli M, Ahn M-Y, Nahass RG, Chen Y-S, SenGupta D, Hyland RH, Osinusi AO, Cao H, Blair C, Wei X, Gaggar A, Brainard DM, Towner WJ, Muñoz J, Mullane KM, Marty FM, Tashima KT, Diaz G, Subramanian A, GS-US-540–5773 Investigators. 2020. Remdesivir for 5 or 10 days in patients with severe COVID-19. N Engl J Med 383:1827–1837. doi:10.1056/NEJMoa2015301.
    1. RECOVERY Collaborative Group, Horby P, Lim WS, Emberson JR, Mafham M, Bell JL, et al. . 2021. Dexamethasone in hospitalized patients with COVID-19. N Engl J Med 384:693–704.
    1. Johnson RM, Vinetz JM. 2020. Dexamethasone in the management of COVID-19. BMJ 370:m2648. doi:10.1136/bmj.m2648.
    1. Verderese JP, Stepanova M, Lam B, Racila A, Kolacevski A, Allen D, et al. . 2021. Neutralizing monoclonal antibody treatment reduces hospitalization for mild and moderate COVID-19: a real-world experience. Clin Infect Dis 74:1063–1069.
    1. Pagliano P, Sellitto C, Scarpati G, Ascione T, Conti V, Franci G, Piazza O, Filippelli A. 2022. An overview of the preclinical discovery and development of remdesivir for the treatment of coronavirus disease 2019 (COVID-19). Expert Opin Drug Discov 17:9–10. doi:10.1080/17460441.2021.1970743.
    1. Singh AK, Singh A, Singh R, Misra A. 2021. Molnupiravir in COVID-19: a systematic review of literature. Diabetes Metab Syndr 15:102329. doi:10.1016/j.dsx.2021.102329.
    1. Jayk Bernal A, Gomes da Silva MM, Musungaie DB, Kovalchuk E, Gonzalez A, Delos Reyes V, Martín-Quirós A, Caraco Y, Williams-Diaz A, Brown ML, Du J, Pedley A, Assaid C, Strizki J, Grobler JA, Shamsuddin HH, Tipping R, Wan H, Paschke A, Butterton JR, Johnson MG, De Anda C. 2022. Molnupiravir for oral treatment of COVID-19 in nonhospitalized patients. N Engl J Med 386:509–520. doi:10.1056/NEJMoa2116044.
    1. Arribas JR, Bhagani S, Lobo SM, Khaertynova I, Mateu L, Fishchuk R, Park YW, Hussein K, Kim WS, Ghosn J, Brown LM, Zhang Y, Gao W, Assaid C, Grobler AJ, Strizki J, Vesnesky M, Paschke A, Butterton RJ, Anda De C, on behalf of the MOVe-IN study group. 2021. Randomized trial of molnupiravir or placebo in patients hospitalized with COVID-19. NEJM Evid 2022:12. doi:10.1056/EVIDoa2100044.
    1. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu N-H, Nitsche A, Müller MA, Drosten C, Pöhlmann S. 2020. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181:271–280. doi:10.1016/j.cell.2020.02.052.
    1. Hoffmann M, Schroeder S, Kleine-Weber H, Müller MA, Drosten C, Pöhlmann S. 2020. Nafamostat mesylate blocks activation of SARS-CoV-2: new treatment option for COVID-19. Antimicrob Agents Chemother 64. doi:10.1128/AAC.00754-20.
    1. Motoo Y. 2007. Antiproteases in the treatment of chronic pancreatitis. JOP 8:533–537.
    1. Kono K, Takahashi A, Sugai H, Umekawa T, Yano T, Kamiyasu K, Teramatsu M, Fujii H. 2005. Oral trypsin inhibitor can improve reflux esophagitis after distal gastrectomy concomitant with decreased trypsin activity. Am J Surg 190:412–417. doi:10.1016/j.amjsurg.2005.05.044.
    1. Hoffmann M, Hofmann-Winkler H, Smith JC, Krüger N, Arora P, Sørensen LK, Søgaard OS, Hasselstrøm JB, Winkler M, Hempel T, Raich L, Olsson S, Danov O, Jonigk D, Yamazoe T, Yamatsuta K, Mizuno H, Ludwig S, Noé F, Kjolby M, Braun A, Sheltzer JM, Pöhlmann S. 2021. Camostat mesylate inhibits SARS-CoV-2 activation by TMPRSS2-related proteases and its metabolite GBPA exerts antiviral activity. EBioMedicine 65:103255. doi:10.1016/j.ebiom.2021.103255.
    1. Li K, Meyerholz DK, Bartlett JA, McCray PB, Jr, 2021. The TMPRSS2 inhibitor nafamostat reduces SARS-CoV-2 pulmonary infection in mouse models of COVID-19. 12:e00970-21.
    1. Kitagawa J, Arai H, Iida H, Mukai J, Furukawa K, Ohtsu S, et al. . 2021. A phase I study of high dose camostat mesylate in healthy adults provides a rationale to repurpose the TMPRSS2 inhibitor for the treatment of COVID-19. Clin Transl Sci 14:1967–1976. doi:10.1111/cts.13052.
    1. Gunst JD, Staerke NB, Pahus MH, Kristensen LH, Bodilsen J, Lohse N, Dalgaard LS, Brønnum D, Fröbert O, Hønge B, Johansen IS, Monrad I, Erikstrup C, Rosendal R, Vilstrup E, Mariager T, Bove DG, Offersen R, Shakar S, Cajander S, Jørgensen NP, Sritharan SS, Breining P, Jespersen S, Mortensen KL, Jensen ML, Kolte L, Frattari GS, Larsen CS, Storgaard M, Nielsen LP, Tolstrup M, Sædder EA, Østergaard LJ, Ngo HTT, Jensen MH, Højen JF, Kjolby M, Søgaard OS. 2021. Efficacy of the TMPRSS2 inhibitor camostat mesilate in patients hospitalized with COVID-19-a double-blind randomized controlled trial. EClinicalMedicine 35:100849. doi:10.1016/j.eclinm.2021.100849.
    1. Sakr Y, Bensasi H, Taha A, Bauer M, Ismail K, Belhaj G, Afet KM, Munde D, Monk D, Buschbeck S, the UAE-Jena Research Group. 2021. Camostat mesylate therapy in critically ill patients with COVID-19 pneumonia. Intensive Care Med 47:707–709. doi:10.1007/s00134-021-06395-1.
    1. Midgley I, Hood AJ, Proctor P, Chasseaud LF, Irons SR, Cheng KN, Brindley CJ, Bonn R. 1994. Metabolic fate of 14C-camostat mesylate in man, rat and dog after intravenous administration. Xenobiotica 24:79–92. doi:10.3109/00498259409043223.
    1. Kiem S, Schentag JJ. 2008. Interpretation of antibiotic concentration ratios measured in epithelial lining fluid. Antimicrob Agents Chemother 52:24–36. doi:10.1128/AAC.00133-06.
    1. Sun G, Sui Y, Zhou Y, Ya J, Yuan C, Jiang L, Huang M. 2021. structural basis of covalent inhibitory mechanism of TMPRSS2-related serine proteases by camostat. J Virol 95:e0086121. doi:10.1128/JVI.00861-21.
    1. Shrimp JH, Kales SC, Sanderson PE, Simeonov A, Shen M, Hall MD. 2020. An enzymatic TMPRSS2 assay for assessment of clinical candidates and discovery of inhibitors as potential treatment of COVID-19. ACS Pharmacol Transl Sci 3:997–1007. doi:10.1021/acsptsci.0c00106.
    1. Sun W, Zhang X, Cummings MD, Albarazanji K, Wu J, Wang M, Alexander R, Zhu B, Zhang YMei, Leonard J, Lanter J, Lenhard J. 2020. Targeting enteropeptidase with reversible covalent inhibitors to achieve metabolic benefits. J Pharmacol Exp Ther 375:510–521. doi:10.1124/jpet.120.000219.
    1. Breining P, Frølund AL, Højen JF, Gunst JD, Staerke NB, Saedder E, Cases‐Thomas M, Little P, Nielsen LP, Søgaard OS, Kjolby M. 2021. Camostat mesylate against SARS-CoV-2 and COVID-19-Rationale, dosing and safety. Basic Clin Pharmacol Toxicol 128:204–212. doi:10.1111/bcpt.13533.

Source: PubMed

3
Prenumerera