A Retrospective Observational Study Assessing the Clinical Outcomes of a Novel Implant System with Low-Speed Site Preparation Protocol and Tri-Oval Implant Geometry

Giacomo Fabbri, Tristan Staas, Istvan Urban, Giacomo Fabbri, Tristan Staas, Istvan Urban

Abstract

A novel, biologically friendly implant concept system introduces low-speed (50 rpm) site preparation instruments used without irrigation and a tri-oval, tapered implant designed to reduce stress on cortical bone without sacrificing mechanical stability. This retrospective, observational, multicenter study (clinicaltrials.gov NCT04736771) collected data from consecutive patients treated with at least one novel concept system implant to evaluate clinical outcomes after 1 year in function. The primary endpoint was a marginal bone level change (MBLC) from loading to 1 year, and secondary endpoints included implant survival and clinician feedback. Ninety-five patients (54 women and 41 men, mean age: 58 ± 12 years) were treated with 165 implants. For 94.5% of implants, site preparation was performed in two steps. The mean follow-up from implant insertion was 1.8 ± 0.2 years. Mean MBLC from implant loading to 1-year follow-up was +0.15 ± 0.85 mm (n = 124 implants). At the last follow-up, the implant survival rate was 98.0%. Clinician satisfaction with the novel concept system was high. The novel concept system offers an easy-to-use implant placement protocol, with most implants placed using two steps. The minimal bone remodeling and high survival rate observed across a variety of indications and treatment protocols demonstrate broad versatility and confirm the clinical benefits of this biologically friendly innovation.

Keywords: bone remodeling; implant site preparation; implant survival; tri-oval implant.

Conflict of interest statement

G. Fabbri, T. Staas, and I. Urban report grants from Nobel Biocare Services AG during the conduct of the study.

Figures

Figure 1
Figure 1
Osteotomy formation protocol. Implant placement follows a two-step site preparation in cases where the osseoshaping instrument can be fully seated without exceeding the torque of 40 Ncm (left panel). If the instrument cannot be seated, the osteotomy is further enlarged using the dense bone–optimized osseoshaping instrument using a torque of up to 40 Ncm (right panel). If needed, the dense bone drill is used (not shown).
Figure 2
Figure 2
Data collection flow. EC, ethical committee.
Figure 3
Figure 3
Sample clinical cases from the study. (ah) A 44-year-old female patient was treated with a single implant to replace a failing maxillary incisor at FDI (Federation Dentaire Internationale) position 21 (a,b). The 13 mm long implant was inserted with the final insertion torque of 57 Ncm with a flapless approach, connected to an On1 base (0.3 mm NP (narrow platform)), and loaded immediately (c,d). The final prosthesis was delivered 2 months later (e,f). Note the stabilization of the marginal bone levels and the excellent soft tissue response at the 1-year follow-up (g,h). (io) A 31-year-old female patient with missing and failing dentition in the maxilla (i,j) was treated with 6 study implants to support a full-arch prosthesis (km). Implants were inserted at FDI positions 13 (healed site), 15 (healed site), 17 (extraction site), 23 (extraction site), 25 (healed site), and 27 (extraction site). Implant length and final insertion torque were 11 mm and 50 Ncm, 11 mm and 50 Ncm, 13 mm and 30 Ncm, 11 mm and 40 Ncm, 11 mm and 50 Ncm, and 13 mm and 40 Ncm. The implants were connected to multi-unit abutments and loaded immediately. The final prosthesis was delivered 5 months later. Note the excellent soft tissue recovery visible at 2 months post-implant insertion (n) and the stable marginal bone levels at the 1-year follow-up (o).
Figure 4
Figure 4
Correlation between the torque of the osseoshaping instrument and the final implant insertion torque.

References

    1. Bennardo F., Barone S., Vocaturo C., Nucci L., Antonelli A., Giudice A. Usefulness of Magnetic Mallet in Oral Surgery and Implantology: A Systematic Review. J. Pers. Med. 2022;12:108. doi: 10.3390/jpm12010108.
    1. Hof M., Tepper G., Semo B., Arnhart C., Watzek G., Pommer B. Patients’ perspectives on dental implant and bone graft surgery: Questionnaire-based interview survey. Clin. Oral. Implant Res. 2014;25:42–45. doi: 10.1111/clr.12061.
    1. Chrcanovic B.R., Albrektsson T., Wennerberg A. Dental implants inserted in fresh extraction sockets versus healed sites: A systematic review and meta-analysis. J. Dent. 2015;43:16–41. doi: 10.1016/j.jdent.2014.11.007.
    1. Seyssens L., De Lat L., Cosyn J. Immediate implant placement with or without connective tissue graft: A systematic review and meta-analysis. J. Clin. Periodontol. 2021;48:284–301. doi: 10.1111/jcpe.13397.
    1. Brånemark P.I., Adell R., Breine U., Hansson B.O., Lindström J., Ohlsson A. Intra-osseous anchorage of dental prostheses. I. Experimental studies. Scand. J. Plast. Reconstr. Surg. 1969;3:81–100. doi: 10.1097/00006534-197107000-00067.
    1. Davies J.E. Mechanisms of endosseous integration. Int. J. Prosthodont. 1998;11:391–401.
    1. Jimbo R., Tovar N., Anchieta R.B., Machado L.S., Marin C., Teixeira H.S., Coelho P.G. The combined effects of undersized drilling and implant macrogeometry on bone healing around dental implants: An experimental study. Int. J. Oral Maxillofac. Surg. 2014;43:1269–1275. doi: 10.1016/j.ijom.2014.03.017.
    1. Kligman S., Ren Z., Chung C.H., Perillo M.A., Chang Y.C., Koo H., Zheng Z., Li C. The Impact of Dental Implant Surface Modifications on Osseointegration and Biofilm Formation. J. Clin. Med. 2021;10:1641. doi: 10.3390/jcm10081641.
    1. Abouzgia M.B., James D.F. Measurements of shaft speed while drilling through bone. J. Oral Maxillofac. Surg. Off. J. Am. Assoc. Oral Maxillofac. Surg. 1995;53:1308–1315. doi: 10.1016/0278-2391(95)90590-1.
    1. Chen C.H., Coyac B.R., Arioka M., Leahy B., Tulu U.S., Aghvami M., Holst S., Hoffmann W., Quarry A., Bahat O., et al. A Novel Osteotomy Preparation Technique to Preserve Implant Site Viability and Enhance Osteogenesis. J. Clin. Med. 2019;8:170. doi: 10.3390/jcm8020170.
    1. Davidson S.R., James D.F. Drilling in bone: Modeling heat generation and temperature distribution. J. Biomech. Eng. 2003;125:305–314. doi: 10.1115/1.1535190.
    1. Eriksson A., Albrektsson T., Grane B., McQueen D. Thermal injury to bone. A vital-microscopic description of heat effects. Int. J. Oral Surg. 1982;11:115–121. doi: 10.1016/S0300-9785(82)80020-3.
    1. Coyac B.R., Salvi G., Leahy B., Li Z., Salmon B., Hoffmann W., Helms J.A. A novel system exploits bone debris for implant osseointegration. J. Periodontol. 2021;92:716–726. doi: 10.1002/JPER.20-0099.
    1. Gazdag A.R., Lane J.M., Glaser D., Forster R.A. Alternatives to Autogenous Bone Graft: Efficacy and Indications. J. Am. Acad. Orthop. Surg. 1995;3:1–8. doi: 10.5435/00124635-199501000-00001.
    1. Khan S.N., Cammisa F.P., Jr., Sandhu H.S., Diwan A.D., Girardi F.P., Lane J.M. The biology of bone grafting. J. Am. Acad. Orthop. Surg. 2005;13:77–86. doi: 10.5435/00124635-200501000-00010.
    1. Tretto P.H.W., Fabris V., Cericato G.O., Sarkis-Onofre R., Bacchi A. Does the instrument used for the implant site preparation influence the bone-implant interface? A systematic review of clinical and animal studies. Int. J. Oral Maxillofac. Surg. 2019;48:97–107. doi: 10.1016/j.ijom.2018.04.005.
    1. Meljon A., Geisendorf M., Kamber S., Fuchs F., Irastorza-Landa A. Evaluation of heat generated by a new site preparation using low-speed tools without irrigation. Clin. Oral Impl. Res. 2021;32:111. doi: 10.1111/clr.38_13856.
    1. Velikov S., Susin C., Heuberger P., Irastorza-Landa A. A New Site Preparation Protocol That Supports Bone Quality Evaluation and Provides Predictable Implant Insertion Torque. J. Clin. Med. 2020;9:494. doi: 10.3390/jcm9020494.
    1. Zemp J., Velikov S., Weißbrot S., Fuchs F. New low-speed site preparation protocol significantly reduces noise; Proceedings of the IADR General Session; Washington, DC, USA. 18–21 March 2020.
    1. Bahat O., Yin X., Holst S., Zabalegui I., Berroeta E., Pérez J., Wöhrle P., Sörgel N., Brunski J., Helms J.A. An Osteotomy Tool That Preserves Bone Viability: Evaluation in Preclinical and Clinical Settings. J. Clin. Med. 2022;11:2536. doi: 10.3390/jcm11092536.
    1. Milleret V., Lienemann P.S., Gasser A., Bauer S., Ehrbar M., Wennerberg A. Rational design and in vitro characterization of novel dental implant and abutment surfaces for balancing clinical and biological needs. Clin. Implant Dent. Relat. Res. 2019;21:s15–s24. doi: 10.1111/cid.12736.
    1. Yin X., Li J., Hoffmann W., Gasser A., Brunski J.B., Helms J.A. Mechanical and Biological Advantages of a Tri-Oval Implant Design. J. Clin. Med. 2019;8:427. doi: 10.3390/jcm8040427.
    1. Lekholm U., Zarb G.A. Patient Selection and Preparation. In: Branemark P.I., Zarb G.A., Albrektsson T., editors. Tissue-Integrated Prosthesis. Osseointegration in Clinical Dentistry. Volume 1. Quintessence Publishing Co., Inc.; Chicago, IL, USA: London, UK: Berlin, Germany: Rio de Janeiro, Brazil: Tokyo, Japan: 1985. pp. 199–208.
    1. van Steenberghe D. Outcomes and their measurement in clinical trials of endosseous oral implants. Ann. Periodontol. 1997;2:291–298. doi: 10.1902/annals.1997.2.1.291.
    1. Aldahlawi S., Demeter A., Irinakis T. The effect of implant placement torque on crestal bone remodeling after 1 year of loading. Clin. Cosmet. Investig. Dent. 2018;10:203–209. doi: 10.2147/CCIDE.S174895.
    1. MacLean S., Hermans M., Villata L., Polizzi G., Sisodia N., Cherry J.E. A retrospective multicenter case series evaluating a novel 3.0-mm expanding tapered body implant for the rehabilitation of missing incisors. Quintessence Int. 2016;47:297–306. doi: 10.3290/j.qi.a35626.35626.
    1. Kolinski M., Hess P., Leziy S., Friberg B., Bellucci G., Trisciuoglio D., Wagner W., Moergel M., Pozzi A., Wiltfang J., et al. Immediate provisionalization in the esthetic zone: 1-year interim results from a prospective single-cohort multicenter study evaluating 3.0-mm-diameter tapered implants. Clin. Oral Investig. 2018;22:2299–2308. doi: 10.1007/s00784-017-2329-2.
    1. Hothorn T., Hornik K., Van De Wiel M.A., Zeileis A. A lego system for conditional inference. Am. Stat. 2006;60:257–263. doi: 10.1198/000313006X118430.
    1. von Elm E., Altman D.G., Egger M., Pocock S.J., Gotzsche P.C., Vandenbroucke J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. J. Clin. Epidemiol. 2008;61:344–349. doi: 10.1016/j.jclinepi.2007.11.008.
    1. Misch C.E., Perel M.L., Wang H.L., Sammartino G., Galindo-Moreno P., Trisi P., Steigmann M., Rebaudi A., Palti A., Pikos M.A., et al. Implant success, survival, and failure: The International Congress of Oral Implantologists (ICOI) Pisa Consensus Conference. Implant Dent. 2008;17:5–15. doi: 10.1097/ID.0b013e3181676059.
    1. Albrektsson T., Zarb G., Worthington P., Eriksson A.R. The long-term efficacy of currently used dental implants: A review and proposed criteria of success. Int. J. Oral Maxillofac. Implant. 1986;1:11–25.
    1. Jemt T. Implant Survival in the Posterior Partially Edentulous Arch-30 Years of Experience. Part IV: A Retro-Prospective Multivariable Regression Analysis on Implant Failures Related to Arch and Implant Surface. Int. J. Prosthodont. 2019;32:143–152. doi: 10.11607/ijp.6012.
    1. Jemt T. Implant Survival in the Partially Edentulous Jaw- 30 Years of Experience. Part III: A Retro-Prospective Multivariate Regression Analysis on Overall Implant Failures in 2,915 Consecutively Treated Arches. Int. J. Prosthodont. 2019;32:36–44. doi: 10.11607/ijp.5970.
    1. Canullo L., Bignozzi I., Cocchetto R., Cristalli M.P., Iannello G. Immediate positioning of a definitive abutment versus repeated abutment replacements in post-extractive implants: 3-year follow-up of a randomised multicentre clinical trial. Eur. J. Oral Implantol. 2010;3:285–296.
    1. Degidi M., Nardi D., Daprile G., Piattelli A. Nonremoval of Immediate Abutments in Cases Involving Subcrestally Placed Postextractive Tapered Single Implants: A Randomized Controlled Clinical Study. Clin. Implant Dent. Relat. Res. 2014;16:794–805. doi: 10.1111/cid.12051.
    1. Grandi T., Guazzi P., Samarani R., Garuti G. Immediate positioning of definitive abutments versus repeated abutment replacements in immediately loaded implants: Effects on bone healing at the 1-year follow-up of a multicentre randomised controlled trial. Eur. J. Oral Implantol. 2012;5:9–16.
    1. Koutouzis T., Koutouzis G., Gadalla H., Neiva R. The Effect of Healing Abutment Reconnection and Disconnection on Soft and Hard Peri-implant Tissues: A Short-Term Randomized Controlled Clinical Trial. Int. J. Oral Maxillofac. Implant. 2013;28:807–814. doi: 10.11607/jomi.3022.
    1. Ho D.S., Yeung S.C., Zee K.Y., Curtis B., Hell P., Tumuluri V. Clinical and radiographic evaluation of NobelActive(TM) dental implants. Clin. Oral. Implant Res. 2013;24:297–304. doi: 10.1111/j.1600-0501.2011.02313.x.

Source: PubMed

3
Prenumerera