Antimicrobial Treatment of Mycobacterium ulcerans Infection

Till Frederik Omansen, Tjip S. van der Werf, Richard Odame Phillips, Gerd Pluschke, Katharina Röltgen, Till Frederik Omansen, Tjip S. van der Werf, Richard Odame Phillips, Gerd Pluschke, Katharina Röltgen

Excerpt

MacCallum and coworkers described Buruli ulcer (BU) as an infectious disease caused by Mycobacterium ulcerans in Victoria, Australia. They first considered the skin lesions in their patients to be caused by tuberculosis or leprosy, when they observed numerous acid-fast bacilli in the biopsy specimens [1]. The typical duration of illness was between 1 and 2 years; treatment was essentially surgical. With the advent of chemotherapy for tuberculosis [2–4], and later for leprosy, doctors made individual attempts to treat the lesions with anti-tuberculosis and anti-leprosy drugs. The anecdotal evidence suggested poor or no response to chemotherapy with rifampicin monotherapy [5], despite the fact that in vitro susceptibility of 33 strains of M. ulcerans was as good as for M. tuberculosis [6]. A randomized clinical trial by the British Medical Research Council in Buruli county (now called Nakasongola; Uganda) failed to show any benefit from clofazimine, a drug then first marketed for leprosy [7]. A small-sized trial with cotrimoxazole (18 participants; 12 evaluable) was inconclusive [8]. A small-sized randomized study in Côte d’Ivoire compared a combination of dapsone and rifampicin with placebo; the follow-up was limited; the ulcer size decreased slightly faster in the intervention group but the baseline characteristics of both groups differed, and the study did not allow to draw any firm conclusions about the effectiveness of these drugs [9]. By the turn of the millennium, the discrepancy between in vitro efficacy of rifampicin [6] or clarithromycin [10] and lack of clinical response prompted to stressing the need for well-designed and well-powered drug trials, but in the meantime, to also improve early detection and surgical treatment [11].

Copyright 2019, The Author(s).

References

    1. MacCallum P, Tolhurst JC (1948) A new mycobacterial infection in man. J Pathol Bacteriol 60(1):93–122
    1. Daniel TM (2006) The history of tuberculosis. Respir Med 100(11):1862–1870
    1. Daniels M, Hill AB (1952) Chemotherapy of pulmonary tuberculosis in young adults; an analysis of the combined results of three Medical Research Council trials. Br Med J 1(4769):1162–1168
    1. Schatz A, Waksman SA (2016) Effect of streptomycin and other antibiotic substances upon mycobacterium tuberculosis and related organisms. Proc Soc Exp Biol Med 57(2):244–248
    1. Meyers WM, Shelly WM, Connor DH (1974) Heat treatment of Mycobacterium ulcerans infections without surgical excision. Am J Trop Med Hyg 23(5):924–929
    1. Stanford JL, Phillips I (1972) Rifampicin in experimental Mycobacterium ulcerans infection. J Med Microbiol 5(1):39–45
    1. Revill WD et al (1973) A controlled trial of the treatment of Mycobacterium ulcerans infection with clofazimine. Lancet 2(7834):873–877
    1. Fehr H, Egger M, Senn I (1994) Cotrimoxazol in the treatment of Mycobacterium ulcerans infection (Buruli ulcer) in West Africa. Trop Dr 24(2):61–63
    1. Espey DK et al (2002) A pilot study of treatment of Buruli ulcer with rifampin and dapsone. Int J Infect Dis 6(1):60–65
    1. Portaels F et al (1998) In vitro susceptibility of Mycobacterium ulcerans to clarithromycin. Antimicrob Agents Chemother 42(8):2070–2073
    1. van der Werf TS et al (1999) Mycobacterium ulcerans infection. Lancet 354(9183):1013–1018
    1. George KM et al (1999) Mycolactone: a polyketide toxin from Mycobacterium ulcerans required for virulence. Science 283(5403):854–857
    1. Hockmeyer WT et al (1978) Further characterization of Mycobacterium ulcerans toxin. Infect Immun 21(1):124–128
    1. Read JK et al (1974) Cytotoxic activity of Mycobacterium ulcerans. Infect Immun 9(6):1114–1122
    1. Pimsler M et al (1988) Immunosuppressive properties of the soluble toxin from Mycobacterium ulcerans. J Infect Dis 157(3):577–580
    1. Debacker M et al (2005) Buruli ulcer recurrence, Benin. Emerg Infect Dis 11(4):584–589
    1. Kanga JM et al (2003) Recurrence after surgical treatment of Buruli ulcer in Cote d’Ivoire. Bull Soc Pathol Exot 96(5):406–409
    1. Teelken MA et al (2003) Buruli ulcer: differences in treatment outcome between two centres in Ghana. Acta Trop 88(1):51–56
    1. Phanzu DM et al (2006) Mycobacterium ulcerans disease (Buruli ulcer) in a rural hospital in Bas-Congo, Democratic Republic of Congo, 2002-2004. Am J Trop Med Hyg 75(2):311–314
    1. Amofah G, Asamoah S, Afram-Gyening C (1998) Effectiveness of excision of pre-ulcerative Buruli lesions in field situations in a rural district in Ghana. Trop Dr 28(2):81–83
    1. Thangaraj HS et al (2000) In vitro activity of ciprofloxacin, sparfloxacin, ofloxacin, amikacin and rifampicin against Ghanaian isolates of Mycobacterium ulcerans. J Antimicrob Chemother 45(2):231–233
    1. Guarner J et al (2003) Histopathologic features of Mycobacterium ulcerans infection. Emerg Infect Dis 9(6):651–656
    1. Nienhuis WA et al (2012) Paradoxical responses after start of antimicrobial treatment in Mycobacterium ulcerans infection. Clin Infect Dis 54(4):519–526
    1. O’Brien DP et al (2009) Paradoxical immune-mediated reactions to Mycobacterium ulcerans during antibiotic treatment: a result of treatment success, not failure. Med J Aust 191(10):564–566
    1. Ruf MT et al (2011) Secondary Buruli ulcer skin lesions emerging several months after completion of chemotherapy: paradoxical reaction or evidence for immune protection? PLoS Negl Trop Dis 5(8):e1252
    1. Dega H et al (2000) Activities of several antimicrobials against Mycobacterium ulcerans infection in mice. Antimicrob Agents Chemother 44(9):2367–2372
    1. Dega H et al (2002) Bactericidal activity of rifampin-amikacin against Mycobacterium ulcerans in mice. Antimicrob Agents Chemother 46(10):3193–3196
    1. Marsollier L, Prévot G et al (2003) Susceptibility of Mycobacterium ulcerans to a combination of amikacin/rifampicin. Int J Antimicrob Agents 22(6):562–566
    1. Etuaful S et al (2005) Efficacy of the combination rifampin-streptomycin in preventing growth of Mycobacterium ulcerans in early lesions of Buruli ulcer in humans. Antimicrob Agents Chemother 49(8):3182–3186
    1. Johnson PDR et al (2005) Buruli ulcer (M. ulcerans infection): new insights, new hope for disease control. PLoS Med 2(4):e108
    1. Radford AJ (2009) The surgical management of lesions of ulcerans infections due to Mycobacterium ulcerans, revisited. Trans R Soc Trop Med Hyg 103(10):981–984
    1. van der Werf TS et al (2005) Mycobacterium ulcerans disease. Bull World Health Organ 83(10):785–791
    1. Wansbrough-Jones M, Phillips R (2006) Buruli ulcer: emerging from obscurity. Lancet 367(9525):1849–1858
    1. Doig KD et al (2012) On the origin of Mycobacterium ulcerans, the causative agent of Buruli ulcer. BMC Genomics 13(1):258
    1. Chauty A et al (2011) Oral treatment for Mycobacterium ulcerans infection: results from a pilot study in Benin. Clin Infect Dis 52(1):94–96
    1. Nienhuis WA et al (2010) Antimicrobial treatment for early, limited Mycobacterium ulcerans infection: a randomised controlled trial. Lancet 375(9715):664–672
    1. Phillips RO et al (2014) Clinical and bacteriological efficacy of rifampin-streptomycin combination for two weeks followed by rifampin and clarithromycin for six weeks for treatment of Mycobacterium ulcerans disease. Antimicrob Agents Chemother 58(2):1161–1166
    1. Almeida D et al (2011) Activities of rifampin, Rifapentine and clarithromycin alone and in combination against Mycobacterium ulcerans disease in mice. PLoS Negl Trop Dis 5(1):e933
    1. Dhople AM (2001) In vitro activity of KRM-1648, either singly or in combination with ofloxacin, against Mycobacterium ulcerans. Int J Antimicrob Agents 17(1):57–61
    1. Owusu E et al (2017) In vitro susceptibility of Mycobacterium ulcerans isolates to selected antimicrobials. Can J Inf Dis Med Microbiol 2017(4):5180984–5180986
    1. Chauffour A et al (2016) Sterilizing activity of fully oral intermittent regimens against Mycobacterium ulcerans infection in Mice. PLoS Negl Trop Dis 10(10):e0005066
    1. Almeida DV et al (2013) Bactericidal activity does not predict sterilizing activity: the case of rifapentine in the murine model of Mycobacterium ulcerans disease. PLoS Negl Trop Dis 7(2):e2085
    1. Beissner M et al (2010) A genotypic approach for detection, identification, and characterization of drug resistance in Mycobacterium ulcerans in clinical samples and isolates from Ghana. Am J Trop Med Hyg 83(5):1059–1065
    1. Jansson M et al (2014) Comparison of two assays for molecular determination of rifampin resistance in clinical samples from patients with Buruli ulcer disease. J Clin Microbiol 52(4):1246–1249
    1. Marsollier L, Honoré N et al (2003) Isolation of three Mycobacterium ulcerans strains resistant to rifampin after experimental chemotherapy of mice. Antimicrob Agents Chemother 47(4):1228–1232
    1. Feldman WH, Karlson AG (1957) Mycobacterium ulcerans infections; response to chemotherapy in mice. Am Rev Tuberc 75(2):266–279
    1. Pattyn SR, Royackers J (1965) Treatment of experimental infection with mycobacterium leprae in mice. Ann Soc Belg Med Trop 45:27–30
    1. Lefrançois S et al (2007) Curing Mycobacterium ulcerans infection in mice with a combination of rifampin-streptomycin or rifampin-amikacin. Antimicrob Agents Chemother 51(2):645–650
    1. Ji B et al (2006) In vitro and in vivo activities of rifampin, streptomycin, amikacin, moxifloxacin, R207910, linezolid, and PA-824 against Mycobacterium ulcerans. Antimicrob Agents Chemother 50(6):1921–1926
    1. Klis S, Stienstra Y, Phillips RO, Abass KM, Tuah W, van der Werf TS (2014) Long term streptomycin toxicity in the treatment of Buruli ulcer: follow-up of participants in the BURULICO drug trial. PLoS Negl Trop Dis 8(3):e2739
    1. Dubuisson T et al (2010) In vitro antimicrobial activities of capuramycin analogues against non-tuberculous mycobacteria. J Antimicrob Chemother 65(12):2590–2597
    1. Rastogi N et al (2000) In vitro activities of the ketolides telithromycin (HMR 3647) and HMR 3004 compared to those of clarithromycin against slowly growing mycobacteria at pHs 6.8 and 7.4. Antimicrob Agents Chemother 44(10):2848–2852
    1. Bentoucha A et al (2001) Activities of new macrolides and fluoroquinolones against Mycobacterium ulcerans infection in mice. Antimicrob Agents Chemother 45(11):3109–3112
    1. O’Brien DP et al (2012) Successful outcomes with oral fluoroquinolones combined with rifampicin in the treatment of Mycobacterium ulcerans: an observational cohort study. PLoS Negl Trop Dis 6(1):e1473
    1. Principi N, Esposito S (2015) Appropriate use of fluoroquinolones in children. Int J Antimicrob Agents 45(4):341–346
    1. Treggiari MM et al (2011) Comparative efficacy and safety of 4 randomized regimens to treat early Pseudomonas aeruginosa infection in children with cystic fibrosis. Arch Pediatr Adolesc Med 165(9):847–856
    1. Dhople AM, Namba K (2002) In vitro activity of sitafloxacin (DU-6859a) alone, or in combination with rifampicin, against Mycobacterium ulcerans. J Antimicrob Chemother 50(5):727–729
    1. Scherr N, Pluschke G, Panda M (2016) Comparative study of activities of a diverse set of antimycobacterial agents against mycobacterium tuberculosis and Mycobacterium ulcerans. Antimicrob Agents Chemother 60(5):3132–3137
    1. Namboodiri SS et al (2011) Quinolone resistance in Escherichia coli from Accra, Ghana. BMC Microbiol 11(1):44
    1. Grosset JH et al (2013) Assessment of clofazimine activity in a second-line regimen for tuberculosis in mice. Am J Respir Crit Care Med 188(5):608–612
    1. Lechartier B, Cole ST (2015) Mode of action of clofazimine and combination therapy with benzothiazinones against Mycobacterium tuberculosis. Antimicrob Agents Chemother 59(8):4457–4463
    1. Arbiser JL, Moschella SL (1995) Clofazimine: a review of its medical uses and mechanisms of action. J Am Acad Dermatol 32(2 Pt 1):241–247
    1. Converse PJ et al (2015) Efficacy of rifampin plus clofazimine in a Murine model of Mycobacterium ulcerans disease. PLoS Negl Trop Dis 9(6):e0003823
    1. Hwang TJ et al (2014) Safety and availability of clofazimine in the treatment of multidrug and extensively drug-resistant tuberculosis: analysis of published guidance and meta-analysis of cohort studies. BMJ Open 4(1):e004143
    1. Bolhuis MS et al (2015) Linezolid tolerability in multidrug-resistant tuberculosis: a retrospective study. Eur Respir J 46(4):1205–1207
    1. Lim LE et al (2013) Anthelmintic avermectins kill Mycobacterium tuberculosis, including multidrug-resistant clinical strains. Antimicrob Agents Chemother 57(2):1040–1046
    1. Omansen TF et al (2015) In-vitro activity of avermectins against Mycobacterium ulcerans. PLoS Negl Trop Dis 9(3):e0003549
    1. Scherr N et al (2015) Selamectin is the avermectin with the best potential for Buruli ulcer treatment. PLoS Negl Trop Dis 9(8):e0003996
    1. Dhople AM (2001) Antimicrobial activities of dihydrofolate reductase inhibitors, used singly or in combination with dapsone, against Mycobacterium ulcerans. J Antimicrob Chemother 47(1):93–96
    1. Cappoen D et al (2014) Biological evaluation of diazene derivatives as anti-tubercular compounds. Eur J Med Chem 74:85–94
    1. Beissner M et al (2012) Spontaneous clearance of a secondary Buruli ulcer lesion emerging ten months after completion of chemotherapy--a case report from Togo. PLoS Negl Trop Dis 6(7):e1747
    1. Gordon CL et al (2011) Spontaneous clearance of Mycobacterium ulcerans in a case of Buruli ulcer. PLoS Negl Trop Dis 5(10):e1290
    1. Chauty A et al (2007) Promising clinical efficacy of streptomycin-rifampin combination for treatment of buruli ulcer (Mycobacterium ulcerans disease). Antimicrob Agents Chemother 51(11):4029–4035
    1. O’Brien DP et al (2007) Outcomes for Mycobacterium ulcerans infection with combined surgery and antibiotic therapy: findings from a South-Eastern Australian case series. Med J Aust 186(2):58–61
    1. Johnson PDR et al (2007) Consensus recommendations for the diagnosis, treatment and control of Mycobacterium ulcerans infection (Bairnsdale or Buruli ulcer) in Victoria, Australia. Med J Aust 186:64–68
    1. Schunk M et al (2009) Outcome of patients with buruli ulcer after surgical treatment with or without antimycobacterial treatment in Ghana. Am J Trop Med Hyg 81(1):75–81
    1. Sarfo FS et al (2010) Clinical efficacy of combination of rifampin and streptomycin for treatment of Mycobacterium ulcerans disease. Antimicrob Agents Chemother 54(9):3678–3685
    1. Iddrisah FN et al (2016) Outcome of Streptomycin-Rifampicin treatment of Buruli Ulcer in two Ghanaian districts. Pan Afr Med J 25(Suppl 1):13
    1. Johnson PDR (2010) Should antibiotics be given for Buruli ulcer? Lancet 375(9715):618–619
    1. O’Brien DP et al (2017) Antibiotic complications during the treatment of Mycobacterium ulcerans disease in Australian patients. Intern Med J 47(9):1011–1019
    1. Klis S, Ranchor A et al (2014) Good quality of life in former Buruli ulcer patients with small lesions: long-term follow-up of the BURULICO trial. PLoS Negl Trop Dis 8(7):e2964
    1. Gordon CL et al (2010) All-oral antibiotic treatment for Buruli ulcer: a report of four patients. PLoS Negl Trop Dis 4(11):e770
    1. Friedman ND et al (2013) Mycobacterium ulcerans disease: experience with primary oral medical therapy in an Australian cohort. PLoS Negl Trop Dis 7(7):e2315
    1. Friedman ND et al (2016) Increasing experience with primary oral medical therapy for Mycobacterium ulcerans disease in an Australian cohort. Antimicrob Agents Chemother 60(5):2692–2695
    1. O’Brien DP, Jenkin G et al (2014) Treatment and prevention of Mycobacterium ulcerans infection (Buruli ulcer) in Australia: guideline update. Med J Aust 200(5):267–270
    1. Amissah NA et al (2015) Genetic diversity of Staphylococcus aureus in Buruli ulcer. PLoS Negl Trop Dis 9(2):e0003421
    1. Yeboah-Manu D et al (2013) Secondary bacterial infections of buruli ulcer lesions before and after chemotherapy with streptomycin and rifampicin. PLoS Negl Trop Dis 7(5):e2191
    1. Amissah NA et al (2017) Virulence potential of Staphylococcus aureus isolates from Buruli ulcer patients. Int J Med Microbiol 307(4-5):223–232
    1. Barogui YT et al (2013) Towards rational use of antibiotics for suspected secondary infections in Buruli ulcer patients. PLoS Negl Trop Dis 7(1):e2010
    1. Van Leuvenhaege C et al (2017) Bacterial diversity in Buruli ulcer skin lesions: Challenges in the clinical microbiome analysis of a skin disease. PLoS ONE 12(7):e0181994
    1. Phillips R et al (2004) Pilot randomized double-blind trial of treatment of Mycobacterium ulcerans disease (Buruli ulcer) with topical nitrogen oxides. Antimicrob Agents Chemother 48(8):2866–2870
    1. O’Brien DP, Ford N et al (2014) Management of BU-HIV co-infection. Tropical Med Int Health 19(9):1040–1047
    1. Alffenaar JWC et al (2010) Pharmacokinetics of rifampin and clarithromycin in patients treated for Mycobacterium ulcerans infection. Antimicrob Agents Chemother 54(9):3878–3883
    1. Boeree MJ et al (2015) A dose-ranging trial to optimize the dose of rifampin in the treatment of tuberculosis. Am J Respir Crit Care Med 191(9):1058–1065
    1. Klis S et al (2016) Clinical outcomes of Ghanaian Buruli ulcer patients who defaulted from antimicrobial therapy. Tropical Med Int Health 21(9):1191–1196
    1. Velding K et al (2016) The application of modern dressings to Buruli ulcers: results from a pilot implementation project in Ghana. Am J Trop Med Hyg 95(1):60–62
    1. Velding K et al (2014) Wound care in Buruli ulcer disease in Ghana and Benin. Am J Trop Med Hyg 91(2):313–318
    1. Anand U et al (2016) Mycolactone-mediated neurite degeneration and functional effects in cultured human and rat DRG neurons: mechanisms underlying hypoalgesia in Buruli ulcer. Mol Pain 12:1744806916654144
    1. En J et al (2017) Mycolactone cytotoxicity in Schwann cells could explain nerve damage in Buruli ulcer. PLoS Negl Trop Dis 11(8):e0005834
    1. En J et al (2008) Mycolactone is responsible for the painlessness of Mycobacterium ulcerans infection (Buruli ulcer) in a murine study. Infect Immun 76(5):2002–2007
    1. de Zeeuw J et al (2015) Assessment and treatment of pain during treatment of Buruli ulcer. PLoS Negl Trop Dis 9(9):e0004076
    1. Alferink M et al (2015) Pain associated with wound care treatment among Buruli ulcer patients from Ghana and Benin. S. C. Hausmann-Muela, ed. PLoS ONE 10(6):e0119926
    1. Renzaho AMN et al (2007) Community-based study on knowledge, attitude and practice on the mode of transmission, prevention and treatment of the Buruli ulcer in Ga West District, Ghana. Tropical Med Int Health 12(3):445–458
    1. Stienstra Y et al (2005) Factors associated with functional limitations and subsequent employment or schooling in Buruli ulcer patients. Tropical Med Int Health 10(12):1251–1257
    1. de Zeeuw J et al (2014) Psychometric properties of the participation scale among former Buruli ulcer patients in Ghana and Benin. PLoS Negl Trop Dis 8(11):e3254
    1. Abass KM et al (2015) Buruli ulcer control in a highly endemic district in Ghana: role of community-based surveillance volunteers. Am J Trop Med Hyg 92(1):115–117
    1. Barogui YT et al (2014) Contribution of the community health volunteers in the control of Buruli ulcer in Bénin. PLoS Negl Trop Dis 8(10):e3200
    1. Mitjà O et al (2017) Integrated control and management of neglected tropical skin diseases. PLoS Negl Trop Dis 11(1):e0005136

Source: PubMed

3
Prenumerera