Validation and Reliability of a Novel Vagus Nerve Neurodynamic Test and Its Effects on Heart Rate in Healthy Subjects: Little Differences Between Sexes

Giacomo Carta, Agnese Seregni, Andrea Casamassima, Manuela Galli, Stefano Geuna, Pasquale Pagliaro, Matteo Zago, Giacomo Carta, Agnese Seregni, Andrea Casamassima, Manuela Galli, Stefano Geuna, Pasquale Pagliaro, Matteo Zago

Abstract

Background: The vagus nerve (VN), also called the pneumogastric nerve, connects the brainstem to organs contained in the chest and abdomen. Physiologically, VN stimulation can rapidly affect cardiac activity and heart rate (HR). VN neuropathy can increase the risk of arrhythmias and sudden death. Therefore, a selective test of VN function may be very useful. Since peripheral neurodynamic tests (NDT) are reliable for the assessment of neuropathies in somatic nerves, we aimed to validate a novel NDT to assess VN activity, namely, the VN-NTD.

Methods: In this cross-sectional double-blind, sex-balanced study, 30 participants (15 females) completed a checklist of autonomic dysfunction symptoms. During the VN-NDT administration, HR and symptoms (i.e., mechanical allodynia) were monitored in parallel to a real-time ultrasonography imaging (USI) and motion capture analysis of the neck. The VN-NDT impact on HR and its accuracy for autonomic symptoms reported in the last 7 days were tested.

Results: The VN-NDT induced a significant HR reduction of about 12 and 8 bpm in males and females [t(1, 119) = 2.425; p < 0.017; ηp 2 = 0.047, 95% confidence interval (CI): 0.93-9.18], respectively. No adverse events were observed during VN-NDT. A substantial interexaminer agreement between the evaluators in symptoms induction by VN-NDT was detected [F(1, 119) = 0.540; p = 0.464; ηp 2 = 0.005, low effect]. Notably, mechanical allodynia accuracy for gastrointestinal dysfunctions was excellent (p < 0.05; 95% CI: 0.52-0.73; p < 0.001; 95% CI: 0.81-0.96).

Conclusions: The novel VN-NDT is a valid and accurate test capable of detecting VN activation with high sensitivity. Data provided are suitable for both sexes as a hallmark of HR variation due to VN normal response. The proposed VN-NDT may be reliable as daily routine neurological examination tests for the evaluation of neuropathic signs related to neuroinflammation of the VN.

Clinical trial registration: www.ClinicalTrials.gov, identifier NCT04192877.

Keywords: diagnostic test; heart rate; neuropathic pain; ultrasound; vagus nerve stimulation.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Carta, Seregni, Casamassima, Galli, Geuna, Pagliaro and Zago.

Figures

FIGURE 1
FIGURE 1
Sequence of the vagus nerve neurodynamic test (VN-NDT) with (1) starting position with upper cervical spine in flexion. (2) Contralateral lateral flexion. (3) Ipsilateral neck rotation. (4) The end position of the test with gentle movements of the upper abdomen caudally and cranially as discrimination maneuverers.
FIGURE 2
FIGURE 2
STARD flowchart of the vagus nerve neurodynamic test (VN-NDT).
FIGURE 3
FIGURE 3
(A) Effect of the VN-NDT on HR in males and females. Values in the graph are expressed as mean ± SD. Two-way ANOVA was carried out (data are normally distributed with comparable variances); asterisk shows the statistically significant difference between sexes (*p ≤ 0.05 and ****p ≤ 0.0001). (B) Ultrasound imaging axial scans of the (i) right vagus nerve at rest and (ii) the final position of the neurodynamic test. The red arrow indicates the vagus nerve and the yellow arrow indicates the anterior tubercle of C6 in male or female participants (no differences between sexes were detected by USI, p = 0.54).
FIGURE 4
FIGURE 4
(A) Head orientation at the end of the neurodynamic test (R: head inclined on the right of the subject; L: head inclined on the left of the subject). (i) Inclination, (ii) rotation, and (iii) flexion/extension. The three dotted vertical lines in the graphs represent the three movements of the VN-NDT combined from the left to the right: upper cervical flexion, contralateral later flexion, and ipsilateral rotation, respectively. (B) ROC curves of symptoms related to vagal dysfunctions or autonomic peripheral neuropathies detected by the onset of tension (left) and pain (right) in the neck during the vagus nerve neurodynamic test. PHS, perceived health status; HR, heart rate.

References

    1. Aggarwal P., Zaveri J. S., Goepfert R. P., Shi Q., Du X. L., Swartz M., et al. (2018). Symptom burden associated with late lower cranial neuropathy in long-term oropharyngeal cancer survivors. JAMA Otolaryngol. Head Neck Surg. 144 1066–1076. 10.1001/jamaoto.2018.1791
    1. Anand I. S., Konstam M. A., Klein H. U., Mann D. L., Ardell J. L., Gregory D. D., et al. (2020). Comparison of symptomatic and functional responses to vagus nerve stimulation in ANTHEM-HF, INOVATE-HF, and NECTAR-HF. ESC Hear. Fail. 7 75–83. 10.1002/ehf2.12592
    1. Ang L., Dillon B., Mizokami-Stout K., Pop-Busui R. (2020). Cardiovascular autonomic neuropathy: A silent killer with long reach. Auton. Neurosci. Basic Clin. 225 1–9. 10.1016/j.autneu.2020.102646
    1. Anil G., Tan T. Y. (2011). CT and MRI evaluation of nerve sheath tumors of the cervical vagus nerve. Am. J. Roentgenol. 197 195–201. 10.2214/AJR.10.5734
    1. Antonino D., Teixeira A. L., Maia-Lopes P. M., Souza M. C., Sabino-Carvalho J. L., Murray A. R., et al. (2017). Non-invasive vagus nerve stimulation acutely improves spontaneous cardiac baroreflex sensitivity in healthy young men: A randomized placebo-controlled trial. Brain Stimul. 10 875–881. 10.1016/j.brs.2017.05.006
    1. Beaulieu-Laroche L., Christin M., Donoghue A., Agosti F., Yousefpour N., Petitjean H., et al. (2020). TACAN Is an Ion Channel Involved in Sensing Mechanical Pain. Cell 180 956–967.e17. 10.1016/j.cell.2020.01.033
    1. Berthoud H. R., Neuhuber W. L. (2000). Functional and chemical anatomy of the afferent vagal system. Auton. Neurosci. 85 1–17. 10.1016/S1566-0702(00)00215-0
    1. Bertilson B. C., Grunnesjö M., Johansson S. E., Strender L. E. (2007). Pain drawing in the assessment of neurogenic pain and dysfunction in the neck/shoulder Region: Inter-Examiner reliability and concordance with clinical examination. Pain Med. 8 134–146. 10.1111/j.1526-4637.2006.00145.x
    1. Besecker E. M., Blanke E. N., Deiter G. M., Holmes G. M. (2020). Gastric vagal afferent neuropathy following experimental spinal cord injury. Exp. Neurol. 323:113092. 10.1016/j.expneurol.2019.113092
    1. Bonet I. J. M., Araldi D., Bogen O., Levine J. D. (2021). Involvement of TACAN, a Mechanotransducing Ion Channel, in Inflammatory But Not Neuropathic Hyperalgesia in the Rat. J. Pain 22 498–508. 10.1016/j.jpain.2020.11.004
    1. Brandt E. B., Bashar S. J., Mahmoud A. I. (2019). Stimulating ideas for heart regeneration: the future of nerve-directed heart therapy. Bioelectron. Med. 5:8. 10.1186/s42234-019-0024-0
    1. Breit S., Kupferberg A., Rogler G., Hasler G. (2018). Vagus nerve as modulator of the brain-gut axis in psychiatric and inflammatory disorders. Front. Psychiatry 9:44. 10.3389/fpsyt.2018.00044
    1. Brookes S. J. H., Spencer N. J., Costa M., Zagorodnyuk V. P. (2013). Extrinsic primary afferent signalling in the gut. Nat. Rev. Gastroenterol. Hepatol. 10 286–296. 10.1038/nrgastro.2013.29
    1. Bueno-Gracia E., Tricás-Moreno J. M., Fanlo-Mazas P., Malo-Urriés M., Haddad-Garay M., Estébanez-de-Miguel E., et al. (2016). Validity of the Upper Limb Neurodynamic Test 1 for the diagnosis of Carpal Tunnel Syndrome. The role of structural differentiation. Man. Ther. 22 190–195. 10.1016/j.math.2015.12.007
    1. Chen X., Zhao C., Zhang C., Li Q., Chen J., Cheng L., et al. (2020). Vagal-α7nAChR signaling promotes lung stem cells regeneration via fibroblast growth factor 10 during lung injury repair. Stem Cell Res. Ther. 11:230. 10.1186/s13287-020-01757-w
    1. Clancy J. A., Mary D. A., Witte K. K., Greenwood J. P., Deuchars S. A., Deuchars J. (2014). Non-invasive Vagus nerve stimulation in healthy humans reduces sympathetic nerve activity. Brain Stimul. 7 871–877. 10.1016/j.brs.2014.07.031
    1. Corazzol M., Lio G., Lefevre A., Deiana G., Tell L., André-Obadia N., et al. (2017). Restoring consciousness with vagus nerve stimulation. Curr. Biol. 27 R994–R996. 10.1016/j.cub.2017.07.060
    1. Del Seppia C., Ghione S., Foresi P., Fommei E., Lapi D., Colantuoni A., et al. (2016). Further evidence of a prolonged hypotensive and a bradycardic effect after mandibular extension in normal volunteers. Arch. Ital. Biol. 154 143–150. 10.12871/00039829201645
    1. Del Seppia C., Ghione S., Foresi P., Lapi D., Fommei E., Colantuoni A., et al. (2017). Evidence in the human of a hypotensive and a bradycardic effect after mouth opening maintained for 10 min. Eur. J. Appl. Physiol. 117 1485–1491. 10.1007/s00421-017-3643-8
    1. Devalle G., Castiglioni P., Arienti C., Abbate C., Mazzucchi A., Agnello L., et al. (2018). Cardio-respiratory autonomic responses to nociceptive stimuli in patients with disorders of consciousness. PLoS One. 13:e0201921. 10.1371/journal.pone.0201921
    1. Dong X. Y., Feng Z. (2018). Wake-promoting effects of vagus nerve stimulation after traumatic brain injury: Upregulation of orexin-A and orexin receptor type 1 expression in the prefrontal cortex. Neural Regen. Res. 13 244–251. 10.4103/1673-5374.226395
    1. Egloff N., Klingler N., Von Känel R., Cámara R., Curatolo M., Wegmann B., et al. (2011). Algometry with a clothes peg compared to an electronic pressure algometer: A randomized cross-sectional study in pain patients. BMC Musculoskelet. Disord. 12:174. 10.1186/1471-2474-12-174
    1. Ehrman J. K., Fernandez A. B., Myers J., Oh P., Thompson P. D., Keteyian S. J. (2020). Aortic Aneurysm: DIAGNOSIS, MANAGEMENT, EXERCISE TESTING, and TRAINING. J. Cardiopulm. Rehabil. Prev. 40 215–223. 10.1097/HCR.0000000000000521
    1. Ekedahl H., Jönsson B., Annertz M., Frobell R. B. (2018). Accuracy of Clinical Tests in Detecting Disk Herniation and Nerve Root Compression in Subjects With Lumbar Radicular Symptoms. Arch. Phys. Med. Rehabil. 99 726–735. 10.1016/j.apmr.2017.11.006
    1. Fajgenbaum M. A. P., Antonakis S. N., Membrey L., Laidlaw D. A. (2018). Acute retinal detachment induced by the Valsalva manoeuvre in morning glory disc anomaly. BMJ Case Rep. 2018:bcr2017223131. 10.1136/bcr-2017-223131
    1. Freeman R. (2005). Autonomic peripheral neuropathy. Lancet 365 1259–1270. 10.1016/S0140-6736(05)74815-7
    1. Fujii K., Yamaguchi S., Egawa H., Hamaguchi S., Kitajima T., Minami J. (2004). Effects of head-up tilt after stellate ganglion block on QT interval and QT dispersion. Reg. Anesth. Pain Med. 29 317–322. 10.1016/j.rapm.2004.03.009
    1. Fung T. C., Olson C. A., Hsiao E. Y. (2017). Interactions between the microbiota, immune and nervous systems in health and disease. Nat. Neurosci. 20 145–155. 10.1038/nn.4476
    1. Garamendi-Ruiz I., Gómez-Esteban J. C. (2019). Cardiovascular autonomic effects of vagus nerve stimulation. Clin. Auton. Res. 29 183–194. 10.1007/s10286-017-0477-8
    1. Giovagnorio F., Martinoli C. (2001). Sonography of the cervical vagus nerve: Normal appearance and abnormal findings. Am. J. Roentgenol. 176 745–749. 10.2214/ajr.176.3.1760745
    1. Gutierrez J., Palma J. A., Kaufmann H. (2020). Acute sensory and autonomic neuronopathy: A devastating disorder affecting sensory and autonomic ganglia. Semin. Neurol. 40 580–590. 10.1055/s-0040-1713843
    1. Ho J. S. Y., Tambyah P. A., Ho A. F. W., Chan M. Y. Y., Sia C. H. (2020). Effect of coronavirus infection on the human heart: A scoping review. Eur. J. Prev. Cardiol. 27 1136–1148. 10.1177/2047487320925965
    1. Huston J. M., Gallowitsch-Puerta M., Ochani M., Ochani K., Yuan R., Rosas-Ballina M., et al. (2007). Transcutaneous vagus nerve stimulation reduces serum high mobility group box 1 levels and improves survival in murine sepsis. Crit. Care Med. 35 2762–2768. 10.1097/
    1. Jensen T. S., Finnerup N. B. (2014). Allodynia and hyperalgesia in neuropathic pain: Clinical manifestations and mechanisms. Lancet Neurol. 13 924–935. 10.1016/S1474-4422(14)70102-4
    1. Johnson R. L., Wilson C. G. (2018). A review of vagus nerve stimulation as a therapeutic intervention. J. Inflamm. Res. 11 203–213. 10.2147/JIR.S163248
    1. Kasehagen B., Ellis R., Pope R., Russell N., Hing W. (2018). Assessing the Reliability of Ultrasound Imaging to Examine Peripheral Nerve Excursion: A Systematic Literature Review. Ultrasound Med. Biol. 44 1–13. 10.1016/j.ultrasmedbio.2017.08.1886
    1. Kirchner A., Birklein F., Stefan H., Handwerker H. O. (2000). Left vagus nerve stimulation suppresses experimentally induced pain. Neurology 55 1167–1171. 10.1212/WNL.55.8.1167
    1. Kobayashi M., Massiello A., Karimov J. H., Van Wagoner D. R., Fukamachi K. (2013). Cardiac autonomic nerve stimulation in the treatment of heart failure. Ann. Thorac. Surg. 96 339–345. 10.1016/j.athoracsur.2012.12.060
    1. Koulidis K., Veremis Y., Anderson C., Heneghan N. R. (2019). Diagnostic accuracy of upper limb neurodynamic tests for the assessment of peripheral neuropathic pain: A systematic review. Musculoskelet. Sci. Pract. 40 21–33. 10.1016/j.msksp.2019.01.001
    1. Lankhorst S., Keet S. W. M., Bulte C. S. E., Boer C. (2015). The impact of autonomic dysfunction on peri-operative cardiovascular complications. Anaesthesia 70 336–343. 10.1111/anae.12904
    1. Malaty M., Kayes T., Amarasekera A. T., Kodsi M., MacIntyre C. R., Tan T. C. (2021). Incidence and treatment of arrhythmias secondary to coronavirus infection in humans: A systematic review. Eur. J. Clin. Invest. 51:e13428. 10.1111/eci.13428
    1. Marathe C. S., Jones K. L., Wu T., Rayner C. K., Horowitz M. (2020). Gastrointestinal autonomic neuropathy in diabetes. Auton. Neurosci. Basic Clin. 229:102718. 10.1016/j.autneu.2020.102718
    1. Martínez-Payá J. J., Ríos-Díaz J., Del Baño-Aledo M. E., García-Martínez D., De Groot-Ferrando A., Meroño-Gallut J. (2015). Biomechanics of the median nerve during stretching as assessed by ultrasonography. J. Appl. Biomech. 31 439–444. 10.1123/jab.2015-0026
    1. Martinoli C., Bianchi S., Santacroce E., Pugliese F., Graif M., Derchi L. E. (2002). Brachial plexus sonography: A technique for assessing the root level. Am. J. Roentgenol. 179 699–702. 10.2214/ajr.179.3.1790699
    1. Nazir H. F., AlFutaisi A., Zacharia M., Elshinawy M., Mevada S. T., Alrawas A., et al. (2017). Vincristine-induced neuropathy in pediatric patients with acute lymphoblastic leukemia in Oman: Frequent autonomic and more severe cranial nerve involvement. Pediatr. Blood Cancer 64:12. 10.1002/pbc.26677
    1. Norcliffe-Kaufmann L. (2019). The Vagus and Glossopharyngeal Nerves in Two Autonomic Disorders. J. Clin. Neurophysiol. 36 443–451. 10.1097/WNP.0000000000000604
    1. Oaklander A. L., Nolano M. (2019). Scientific Advances in and Clinical Approaches to Small-Fiber Polyneuropathy: A Review. JAMA Neurol. 76 1240–1251. 10.1001/jamaneurol.2019.2917
    1. Paisley A. N., Abbott C. A., Van Schie C. H. M., Boulton A. J. M. (2002). A comparison of the Neuropen against standard quantitative sensory-threshold measures for assessing peripheral nerve function. Diabet. Med. 19 400–405. 10.1046/j.1464-5491.2002.00706.x
    1. Parra B., Lizarazo J., Jiménez-Arango J. A., Zea-Vera A. F., González-Manrique G., Vargas J., et al. (2016). Guillain–Barré Syndrome Associated with Zika Virus Infection in Colombia. N. Engl. J. Med. 375 1513–1523. 10.1056/nejmoa1605564
    1. Pstras L., Thomaseth K., Waniewski J., Balzani I., Bellavere F. (2016). The Valsalva manoeuvre: Physiology and clinical examples. Acta Physiol. 217 103–119. 10.1111/apha.12639
    1. Reshef E. R., Schiff N. D., Brown E. N. (2019). A Neurologic Examination for AnesthesiologistsAssessing Arousal Level during Induction, Maintenance, and Emergence. Anesthesiology 130 462–471. 10.1097/ALN.0000000000002559
    1. Richardson J. T. E. (2011). Eta squared and partial eta squared as measures of effect size in educational research. Educ. Res. Rev. 6 135–147. 10.1016/j.edurev.2010.12.001
    1. Salaffi F., Stancati A., Silvestri C. A., Ciapetti A., Grassi W. (2004). Minimal clinically important changes in chronic musculoskeletal pain intensity measured on a numerical rating scale. Eur. J. Pain 8 283–291. 10.1016/j.ejpain.2003.09.004
    1. Santos Breder I. S., Sposito A. C. (2019). Cardiovascular autonomic neuropathy in type 2 diabetic patients. Rev. Assoc. Med. Bras. 65 56–60. 10.1590/1806-9282.65.1.56
    1. Sarkar S. K., Midi H. (2010). Importance of assessing the model adequacy of binary logistic regression. J. Appl. Sci. 10 479–486. 10.3923/jas.2010.479.486
    1. Schachter S. C. (2006). Therapeutic effects of vagus nerve stimulation in epilepsy and implications for sudden unexpected death in epilepsy. Clin. Auton. Res. 16 29–32. 10.1007/s10286-006-0275-1
    1. Schmid A. B., Brunner F., Luomajoki H., Held U., Bachmann L. M., Künzer S., et al. (2009). Reliability of clinical tests to evaluate nerve function and mechanosensitivity of the upper limb peripheral nervous system. BMC Musculoskelet. Disord. 10:11. 10.1186/1471-2474-10-11
    1. Schrezenmaier C., Singer W., Swift N. M., Sletten D., Tanabe J., Low P. A. (2007). Adrenergic and vagal baroreflex sensitivity in autonomic failure. Arch. Neurol. 64 381–386. 10.1001/archneur.64.3.381
    1. Suarez-Roca H., Klinger R. Y., Podgoreanu M. V., Ji R. R., Sigurdsson M. I., Waldron N., et al. (2019). Contribution of Baroreceptor Function to Pain Perception and Perioperative Outcomes. Anesthesiology 130 634–650. 10.1097/ALN.0000000000002510
    1. Sunaryo P., Choudhry O., Sharer L., Eloy J., Liu J. (2012). Schwannomas of the Anterior Skull Base: Analysis of 41 Cases in the Literature. J. Neurol. Surg. Part B Skull Base 73:56. 10.1055/s-0032-1312208
    1. Taenzer A. H., Clark C., Curry C. S. (2000). Gender affects report of pain and function after arthroscopic anterior cruciate ligament reconstruction. Anesthesiology 93 670–675. 10.1097/00000542-200009000-00015
    1. Terkelsen A. J., Karlsson P., Lauria G., Freeman R., Finnerup N. B., Jensen T. S. (2017). The diagnostic challenge of small fibre neuropathy: clinical presentations, evaluations, and causes. Lancet Neurol. 16 934–944. 10.1016/S1474-4422(17)30329-0
    1. Velten A. P. C., Bensenor I., Lotufo P., Mill J. G. (2020). Prevalence of orthostatic hypotension and the distribution of pressure variation in the longitudinal study of adult health. Arq. Bras. Cardiol. 114 1040–1048. 10.36660/abc.20180354
    1. Verlinden T. J. M., Rijkers K., Hoogland G., Herrler A. (2016). Morphology of the human cervical vagus nerve: Implications for vagus nerve stimulation treatment. Acta Neurol. Scand. 133 173–182. 10.1111/ane.12462
    1. Verwoerd A. J. H., Mens J., el Barzouhi A., Peul W. C., Koes B. W., Verhagen A. P. (2016). A diagnostic study in patients with sciatica establishing the importance of localization of worsening of pain during coughing, sneezing and straining to assess nerve root compression on MRI. Eur. Spine J. 25 1389–1392. 10.1007/s00586-016-4393-8
    1. Wasan A. D., Loggia M. L., Chen L. Q., Napadow V., Kong J., Gollub R. L. (2011). Neural correlates of chronic low back pain measured by arterial spin labeling. Anesthesiology 115 364–374. 10.1097/ALN.0b013e318220e880
    1. Williams S. M., Eleftheriadou A., Alam U., Cuthbertson D. J., Wilding J. P. H. (2019). Cardiac Autonomic Neuropathy in Obesity, the Metabolic Syndrome and Prediabetes: A Narrative Review. Diabetes Ther. 10 1995–2021. 10.1007/s13300-019-00693-0
    1. Zago M., Sforza C., Mariani D., Marconi M., Biloslavo A., Greca A., et al. (2020). Educational impact of hand motion analysis in the evaluation of FAST examination skills. Eur. J. Trauma Emerg. Surg. 46 1421–1428. 10.1007/s00068-019-01112-6
    1. Zagorodnyuk V. P., Brookes S. J. H. (2000). Transduction sites of vagal mechanoreceptors in the guinea pig esophagus. J. Neurosci. 20 6249–6255. 10.1523/jneurosci.20-16-06249.2000
    1. Zeng W. Z., Marshall K. L., Min S., Daou I., Chapleau M. W., Abboud F. M., et al. (2018). PIEZOs mediate neuronal sensing of blood pressure and the baroreceptor reflex. Science 362 464–467. 10.1126/science.aau6324

Source: PubMed

3
Prenumerera