Hemodynamic evaluation by serial right heart catheterizations after cardiac arrest; protocol of a sub-study from the Blood Pressure and Oxygenation Targets after Out-of-Hospital Cardiac Arrest-trial (BOX)

Johannes Grand, Christian Hassager, Henrik Schmidt, Jacob E Møller, Simon Mølstrøm, Benjamin Nyholm, Jesper Kjaergaard, Johannes Grand, Christian Hassager, Henrik Schmidt, Jacob E Møller, Simon Mølstrøm, Benjamin Nyholm, Jesper Kjaergaard

Abstract

Background: Neurological injury and mortality remain high in comatose patients resuscitated from out-of-hospital cardiac arrest (OHCA). Hypotension and hypoxia during post-resuscitation care have been associated with poor outcome, but the optimal oxygenation- and blood pressure-targets are unknown. The impact of different doses of norepinephrine on advanced hemodynamic after OHCA and the impact of different oxygenation-targets on pulmonary circulation and resistance (PVR), are unknown. The aims of this substudy of the "Blood pressure and oxygenations targets after out-of-hospital cardiac arrest (BOX)"-trial are to investigate the effect of two different MAP- and oxygenation-targets on advanced systemic and pulmonary hemodynamics measured by pulmonary artery catheters (PAC).

Methods: The BOX-trial is an investigator-initiated, randomized, controlled study comparing targeted MAP of 63 mmHg vs 77 mmHg (double-blinded intervention) and 9-10 kPa versus PaO2 of 13-14 kPa oxygenation-targets (open-label). Per protocol, all patients will be monitored systematically with PACs. The primary endpoint of the hemodynamic-substudy is cardiac output for the MAP-intervention, and PVR for the oxygenation-intervention. For both endpoints, the difference within 48 h between groups are assessed. Secondary endpoints are pulmonary capillary wedge pressure and pulmonary arterial pressure and association between advanced hemodynamic variables and mortality and biomarkers of inflammation and brain injury.

Discussion: In the BOX-trial, patients will be randomly allocated to two levels of MAP and oxygenation, which are central parts of post-resuscitation care and where evidence is sparse. The advanced-hemodynamic substudy will give valuable knowledge of the hemodynamic consequences of changing blood pressure and oxygen-levels of the critical cardiac patient. It will be one of the largest clinical, prospective trials of advanced hemodynamics measured by serial PACs in consecutive comatose patients, resuscitated after OHCA. The randomized and placebo-controlled trialdesign of the MAP-intervention minimizes risk of selection bias and confounders. Furthermore, hemodynamic characteristics and associations with outcome will be investigated.

Trial registration: ClinicalTrials.gov (ClinicalTrials.gov Identifier: NCT03141099). Registered March 30, 2017.

Keywords: Blood pressure; Cardiac output; Hemodynamics; Neuroprotection; Out-of-hospital cardiac arrest; Pulmonary artery catheter.

Conflict of interest statement

CH: Lecture honorarium from Abiomed. Research grands: Lundbeck Foundation (R186-2015-2132) and Novo Nordisk Foundation (NNF20OC0064043).

© 2021 The Author(s).

Figures

Fig. 1
Fig. 1
Flowchart summarizing patient enrollment and main study procedures. OHCA: out-of-hospital cardiac arrest; ROSC: return of spontaneous circulation; IHCA: In-hospital cardiac arrest; CPC: cerebral performance category; PAC: Pulmonary artery catheter; T0: time at ICU-admission; ICU: intensive care unit.
Fig. 2
Fig. 2
Detailed overview of study-related procedures. RASS: Richmond Agitation-Sedation Scale; T0: time at ICU-admission; 3 M−FU: 3 months follow-up; Vital: vital signs; A-gas: Arterial blood gas; V-gas: central venous blood gas; ECG12: electrocardiogram; PAC: measurements from pulmonary artery catheter; Crea: creatinine-clearence.

References

    1. Atwood C., Eisenberg M.S., Herlitz J., Rea T.D. Incidence of EMS-treated out-of-hospital cardiac arrest in Europe. Resuscitation. 2005;67:75–80. doi: 10.1016/j.resuscitation.2005.03.021.
    1. Gräsner J.-T., Lefering R., Koster R.W., et al. EuReCa ONE-27 Nations, ONE Europe, ONE Registry: A prospective one month analysis of out-of-hospital cardiac arrest outcomes in 27 countries in Europe. Resuscitation. 2016;105:188–195. doi: 10.1016/j.resuscitation.2016.06.004.
    1. Nolan J.P., Sandroni C., Böttiger B.W., et al. European Resuscitation Council and European Society of Intensive Care Medicine Guidelines 2021: Post-resuscitation care. Resuscitation. 2021;161:220–269. doi: 10.1016/j.resuscitation.2021.02.012.
    1. Nielsen N., Wetterslev J., Cronberg T., et al. Targeted temperature management at 33°C versus 36°C after cardiac arrest. N Engl J Med. 2013;369:2197–2206. doi: 10.1056/NEJMoa1310519.
    1. Carr B.G., Kahn J.M., Merchant R.M., Kramer A.A., Neumar R.W. Inter-hospital variability in post-cardiac arrest mortality. Resuscitation. 2009;80:30–34. doi: 10.1016/j.resuscitation.2008.09.001.
    1. Laver S., Farrow C., Turner D., Nolan J. Mode of death after admission to an intensive care unit following cardiac arrest. Intensive Care Med. 2004;30:2126–2128. doi: 10.1007/s00134-004-2425-z.
    1. Nolan J.P., Neumar R.W., Adrie C., et al. Post-cardiac arrest syndrome: epidemiology, pathophysiology, treatment, and prognostication. A Scientific Statement from the International Liaison Committee on Resuscitation; the American Heart Association Emergency Cardiovascular Care Committee; the Council on Cardiovascular Surgery and Anesthesia; the Council on Cardiopulmonary, Perioperative, and Critical Care; the Council on Clinical Cardiology; the Council on Stroke. Resuscitation. 2008;79:350–379. doi: 10.1016/j.resuscitation.2008.09.017.
    1. Bro-Jeppesen J., Johansson P.I., Hassager C., et al. Endothelial activation/injury and associations with severity of post-cardiac arrest syndrome and mortality after out-of-hospital cardiac arrest. Resuscitation. 2016;107:71–79. doi: 10.1016/j.resuscitation.2016.08.006.
    1. Sundgreen C., Larsen F.S., Herzog T.M., Knudsen G.M., Boesgaard S., Aldershvile J. Autoregulation of cerebral blood flow in patients resuscitated from cardiac arrest. Stroke. 2001;32:128–132. doi: 10.1161/01.str.32.1.128.
    1. Grand J., Lilja G., Kjaergaard J., et al. Arterial blood pressure during targeted temperature management after out-of-hospital cardiac arrest and association with brain injury and long-term cognitive function. Eur Heart J Acute Cardiovasc Care. 2019 doi: 10.1177/2048872619860804.
    1. Grand J., Wiberg S., Kjaergaard J., Wanscher M., Hassager C. Increasing mean arterial pressure or cardiac output in comatose out-of-hospital cardiac arrest patients undergoing targeted temperature management: Effects on cerebral tissue oxygenation and systemic hemodynamics. Resuscitation. 2021 doi: 10.1016/j.resuscitation.2021.08.037. S0300-9572(21)00338-5.
    1. Laurent I., Monchi M., Chiche J.-D., et al. Reversible myocardial dysfunction in survivors of out-of-hospital cardiac arrest. J Am Coll Cardiol. 2002;40:2110–2116. doi: 10.1016/s0735-1097(02)02594-9.
    1. Bro-Jeppesen J., Hassager C., Wanscher M., et al. Targeted temperature management at 33°C versus 36°C and impact on systemic vascular resistance and myocardial function after out-of-hospital cardiac arrest: a sub-study of the Target Temperature Management Trial. Circ Cardiovasc Interv. 2014;7:663–672. doi: 10.1161/CIRCINTERVENTIONS.114.001556.
    1. Grand J., Kjaergaard J., Bro-Jeppesen J., et al. Cardiac output, heart rate and stroke volume during targeted temperature management after out-of-hospital cardiac arrest: Association with mortality and cause of death. Resuscitation. 2019;142:136–143. doi: 10.1016/j.resuscitation.2019.07.024.
    1. Rivers E., Nguyen B., Havstad S., et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345:1368–1377. doi: 10.1056/NEJMoa010307.
    1. Howell M.D., Davis A.M. Management of Sepsis and Septic Shock. JAMA. 2017;317:847–848. doi: 10.1001/jama.2017.0131.
    1. Russo J.J., Di Santo P., Simard T., et al. Optimal mean arterial pressure in comatose survivors of out-of-hospital cardiac arrest: An analysis of area below blood pressure thresholds. Resuscitation. 2018;128:175–180. doi: 10.1016/j.resuscitation.2018.04.028.
    1. Grand J., Hassager C., Winther-Jensen M., et al. Mean arterial pressure during targeted temperature management and renal function after out-of-hospital cardiac arrest. J Crit Care. 2019;50:234–241. doi: 10.1016/j.jcrc.2018.12.009.
    1. Grand J., Hassager C., Skrifvars M.B., et al. Haemodynamics and vasopressor support during prolonged targeted temperature management for 48 hours after out-of-hospital cardiac arrest: a post hoc substudy of a randomised clinical trial. Eur Heart J Acute Cardiovasc Care. 2020 doi: 10.1177/2048872620934305.
    1. Bhate T.D., McDonald B., Sekhon M.S., Griesdale D.E.G. Association between blood pressure and outcomes in patients after cardiac arrest: A systematic review. Resuscitation. 2015;97:1–6. doi: 10.1016/j.resuscitation.2015.08.023.
    1. Laurikkala J., Wilkman E., Pettilä V., et al. Mean arterial pressure and vasopressor load after out-of-hospital cardiac arrest: Associations with one-year neurologic outcome. Resuscitation. 2016;105:116–122. doi: 10.1016/j.resuscitation.2016.05.026.
    1. Kilgannon J.H., Roberts B.W., Jones A.E., et al. Arterial blood pressure and neurologic outcome after resuscitation from cardiac arrest*. Crit Care Med. 2014;42:2083–2091. doi: 10.1097/CCM.0000000000000406.
    1. Grand J., Meyer A.S.P., Hassager C., Schmidt H., Møller J.E., Kjaergaard J. Validation and Clinical Evaluation of a Method for Double-Blinded Blood Pressure Target Investigation in Intensive Care Medicine. Crit Care Med. 2018;46:1626–1633. doi: 10.1097/CCM.0000000000003289.
    1. Grand J., Meyer A.S., Kjaergaard J., et al. A randomised double-blind pilot trial comparing a mean arterial pressure target of 65 mm Hg versus 72 mm Hg after out-of-hospital cardiac arrest. Eur Heart J Acute Cardiovasc Care. 2020 doi: 10.1177/2048872619900095.
    1. Bergman R., Braber A., Adriaanse M.A., van Vugt R., Tjan D.H.T., van Zanten A.R.H. Haemodynamic consequences of mild therapeutic hypothermia after cardiac arrest. Eur J Anaesthesiol. 2010;27:383–387. doi: 10.1097/EJA.0b013e3283333a7d.
    1. Nordmark J., Johansson J., Sandberg D., et al. Assessment of intravascular volume by transthoracic echocardiography during therapeutic hypothermia and rewarming in cardiac arrest survivors. Resuscitation. 2009;80:1234–1239. doi: 10.1016/j.resuscitation.2009.06.035.
    1. Jakkula P., Pettilä V., Skrifvars M.B., et al. Targeting low-normal or high-normal mean arterial pressure after cardiac arrest and resuscitation: a randomised pilot trial. Intensive Care Med. 2018;44:2091–2101. doi: 10.1007/s00134-018-5446-8.
    1. Ameloot K., De Deyne C., Ferdinande B., et al. Mean arterial pressure of 65 mm Hg versus 85–100 mm Hg in comatose survivors after cardiac arrest: Rationale and study design of the Neuroprotect post-cardiac arrest trial. Am Heart J. 2017;191:91–98. doi: 10.1016/j.ahj.2017.06.010.
    1. Chan A.-W., Tetzlaff J.M., Altman D.G., et al. SPIRIT 2013 statement: defining standard protocol items for clinical trials. Ann Intern Med. 2013;158:200–207. doi: 10.7326/0003-4819-158-3-201302050-00583.
    1. Monnet X., Persichini R., Ktari M., Jozwiak M., Richard C., Teboul J.-L. Precision of the transpulmonary thermodilution measurements. Crit Care Lond Engl. 2011;15:R204. doi: 10.1186/cc10421.
    1. Mehta Y., Arora D. Newer methods of cardiac output monitoring. World J Cardiol. 2014;6:1022–1029. doi: 10.4330/wjc.v6.i9.1022.
    1. Singh A., Juneja R., Mehta Y., Trehan N. Comparison of continuous, stat, and intermittent cardiac output measurements in patients undergoing minimally invasive direct coronary artery bypass surgery. J Cardiothorac Vasc Anesth. 2002;16:186–190. doi: 10.1053/jcan.2002.31063.
    1. Fincke R., Hochman J.S., Lowe A.M., et al. Cardiac power is the strongest hemodynamic correlate of mortality in cardiogenic shock: a report from the SHOCK trial registry. J Am Coll Cardiol. 2004;44:340–348. doi: 10.1016/j.jacc.2004.03.060.
    1. Harris P.A., Taylor R., Thielke R., Payne J., Gonzalez N., Conde J.G. Research electronic data capture (REDCap)–a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42:377–381. doi: 10.1016/j.jbi.2008.08.010.
    1. Donders A.R.T., van der Heijden G.J.M.G., Stijnen T., Moons K.G.M. Review: a gentle introduction to imputation of missing values. J Clin Epidemiol. 2006;59:1087–1091. doi: 10.1016/j.jclinepi.2006.01.014.
    1. Oksanen T., Skrifvars M., Wilkman E., Tierala I., Pettilä V., Varpula T. Postresuscitation hemodynamics during therapeutic hypothermia after out-of-hospital cardiac arrest with ventricular fibrillation: a retrospective study. Resuscitation. 2014;85:1018–1024. doi: 10.1016/j.resuscitation.2014.04.026.
    1. Bernard S.A., Gray T.W., Buist M.D., et al. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med. 2002;346:557–563. doi: 10.1056/NEJMoa003289.
    1. Bro-Jeppesen J., Annborn M., Hassager C., et al. Hemodynamics and vasopressor support during targeted temperature management at 33°C Versus 36°C after out-of-hospital cardiac arrest: a post hoc study of the target temperature management trial*. Crit Care Med. 2015;43:318–327. doi: 10.1097/CCM.0000000000000691.
    1. Bro-Jeppesen J., Kjaergaard J., Wanscher M., et al. Systemic Inflammatory Response and Potential Prognostic Implications After Out-of-Hospital Cardiac Arrest: A Substudy of the Target Temperature Management Trial. Crit Care Med. 2015;43:1223–1232. doi: 10.1097/CCM.0000000000000937.
    1. Ameloot K., Meex I., Genbrugge C., et al. Hemodynamic targets during therapeutic hypothermia after cardiac arrest: A prospective observational study. Resuscitation. 2015;91:56–62. doi: 10.1016/j.resuscitation.2015.03.016.
    1. Sekhon M.S., Griesdale D.E. Individualized perfusion targets in hypoxic ischemic brain injury after cardiac arrest. Crit Care Lond Engl. 2017;21:259. doi: 10.1186/s13054-017-1832-9.
    1. Ameloot K., Jakkula P., Hästbacka J., et al. Optimum Blood Pressure in Patients With Shock After Acute Myocardial Infarction and Cardiac Arrest. J Am Coll Cardiol. 2020;76:812–824. doi: 10.1016/j.jacc.2020.06.043.
    1. Wihersaari L., Ashton N.J., Reinikainen M., et al. Neurofilament light as an outcome predictor after cardiac arrest: a post hoc analysis of the COMACARE trial. Intensive Care Med. 2021;47:39–48. doi: 10.1007/s00134-020-06218-9.
    1. Skåre C., Karlsen H., Strand-Amundsen R.J., et al. Cerebral perfusion and metabolism with mean arterial pressure 90 vs. 60 mmHg in a porcine post cardiac arrest model with and without targeted temperature management. Resuscitation. 2021;S0300–9572(21):00234–243. doi: 10.1016/j.resuscitation.2021.06.011.
    1. Mölström S., Nielsen T.H., Nordström C.H., et al. Bedside microdialysis for detection of early brain injury after out-of-hospital cardiac arrest. Sci Rep. 2021;11:15871. doi: 10.1038/s41598-021-95405-9.
    1. Foulon P., De Backer D. The hemodynamic effects of norepinephrine: far more than an increase in blood pressure! Ann Transl Med. 2018;6(S25) doi: 10.21037/atm.2018.09.27.
    1. Monnet X., Jabot J., Maizel J., Richard C., Teboul J.-L. Norepinephrine increases cardiac preload and reduces preload dependency assessed by passive leg raising in septic shock patients. Crit Care Med. 2011;39:689–694. doi: 10.1097/CCM.0b013e318206d2a3.
    1. Alhayek S., Preuss C.V. StatPearls Publishing; StatPearls, Treasure Island (FL): 2021. Beta 1 Receptors.
    1. Hamzaoui O., Jozwiak M., Geffriaud T., et al. Norepinephrine exerts an inotropic effect during the early phase of human septic shock. Br J Anaesth. 2018;120:517–524. doi: 10.1016/j.bja.2017.11.065.
    1. Grand J., Bro-Jeppesen J., Hassager C., et al. Cardiac output during targeted temperature management and renal function after out-of-hospital cardiac arrest. J Crit Care. 2019;54:65–73. doi: 10.1016/j.jcrc.2019.07.013.
    1. Huang C.-H., Tsai M.-S., Ong H.N., et al. Association of hemodynamic variables with in-hospital mortality and favorable neurological outcomes in post-cardiac arrest care with targeted temperature management. Resuscitation. 2017;120:146–152. doi: 10.1016/j.resuscitation.2017.07.009.
    1. Mölström S., Nielsen T.H., Nordström C.H., et al. Design paper of the “Blood pressure targets in post-resuscitation care and bedside monitoring of cerebral energy state: a randomized clinical trial”. Trials. 2019;20:344. doi: 10.1186/s13063-019-3397-1.

Source: PubMed

3
Prenumerera