The Biological Role of Klotho Protein in the Development of Cardiovascular Diseases

Agnieszka Olejnik, Aleksandra Franczak, Anna Krzywonos-Zawadzka, Marta Kałużna-Oleksy, Iwona Bil-Lula, Agnieszka Olejnik, Aleksandra Franczak, Anna Krzywonos-Zawadzka, Marta Kałużna-Oleksy, Iwona Bil-Lula

Abstract

Klotho is a membrane-bound or soluble antiaging protein, whose protective activity is essential for a proper function of many organs. In 1997, an accidental insertion of a transgene led to creation of transgenic mice with several age-related disorders. In Klotho-deficient mice, the inherited phenotypes closely resemble human aging, while in an animal model of Klotho overexpression, the lifespan is extended. Klotho protein is detected mainly in the kidneys and brain. It is a coreceptor for fibroblast growth factor and hence is involved in maintaining endocrine system homeostasis. Furthermore, an inhibition of insulin/insulin-like growth factor-1 signaling pathway by Klotho regulates oxidative stress and reduces cell death. The association between serum Klotho and the classic risk factors, as well as the clinical history of cardiovascular disease, was also shown. There are a lot of evidences that Klotho deficiency correlates with the occurrence and development of coronary artery disease, atherosclerosis, myocardial infarction, and left ventricular hypertrophy. Therefore, an involvement of Klotho in the signaling pathways and in regulation of a proper cell metabolism could be a crucial factor in the cardiac and vascular protection. It is also well established that Klotho protein enhances the antioxidative response via augmented production of superoxide dismutase and reduced generation of reactive oxygen species. Recent studies have proven an expression of Klotho in cardiomyocytes and its increased expression in stress-related heart injury. Thus, the antioxidative and antiapoptotic activity of Klotho could be considered as the novel protective factor in cardiovascular disease and heart injury.

Figures

Figure 1
Figure 1
The scheme of membrane-bound and soluble (shed and secreted) forms of αKlotho. (a) Membrane-bound αKlotho is created by 3 domains: cytoplasmic (CYT), transmembrane (TM), and ectodomain. The ectodomain has two internal repeats, KL1 and KL2. Membrane-bound αKlotho is subjected to shedding of ectodomain by ADAM 10 or 17 protease in two ways to release three shed αKlotho. The alternative transcriptional termination of kl gene expression leads to generation of secreted αKlotho. (b) Membrane-bound αKlotho forms a complex with FGFR to create a high-affinity binding site for FGF23. ADAM, a disintegrin and metalloproteinase domain-containing protein; FGFR, fibroblast growth factor receptor; FGF23, fibroblast growth factor 23.
Figure 2
Figure 2
The scheme of an expected mechanism by which Klotho protein is involved in cardiovascular diseases. (a) Local deficiency of vascular-derived Klotho leads to calcification. It is related to the FGFR/FGF23 resistance, which in turn inhibits the anticalcific effect of FGF23. An attenuated expression of Klotho protein in vessel wall reduces production of NO and increases formation of ROS. Therefore, an imbalance of Klotho and FGF23 leads to oxidative stress and endothelial dysfunction. (b) Depletion of Klotho can promote the prooxidative, proinflammatory, proapoptotic activity and damage of cardiomyocytes in the state of CVD risk. As a consequence, cardiac dysfunction and cardiomyopathy may be observed. (c) Klotho deficiency and KL gene polymorphisms are the risk factors for cardiovascular disease and correlate with the development of atherosclerosis, CAD, MI, or LVH. (d) An occurrence of cardiac hypertrophy and remodeling in the state of Klotho deficiency is related to oxidative stress. It is caused by the activation of p38 and ERK1/2 signaling pathways, as well as by the overexpression of TRPC6 channels in heart. The treatment with exogenous Klotho may provide protection against the fibrotic alterations. (e) Klotho contributes to alleviation of cardiac dysfunction and pathological changes in toxemic and ischemic heart. The treatment with Klotho mitigates an inflammation, ROS generation, apoptosis, mitochondrial dysfunction, fibrosis, and hypertrophy. Klotho may induce the restoration of cardiac function and thus could be explored as a therapeutic factor in myocardial injury. FGFR, fibroblast growth factor receptor; FGF23, fibroblast growth factor 23; NO, nitric oxide; ROS, reactive oxygen species; CAD, coronary artery disease; MI, myocardial infarction; LVH, left ventricular hypertrophy; ERK1/2, extracellular signal-regulated kinase 1/2; TRPC6, transient receptor potential canonical 6; , induction; , reduction.
Figure 3
Figure 3
Schematic representation of FGFR1/FGF21/βKlotho complex actions in the cardiomyocytes. (a) FGF21 is produced mainly in the liver and adipose tissue. (b) Different cardiac stress stimuli activate Sirt1-PPARα pathway in the heart. It leads to production of FGF21 in the cardiomyocytes in an autocrine manner. (c) FGF21 creates a complex with membrane-bound βKlotho and FGFR1 in the cardiac cells. Activation of FGFR1/FGF21/βKlotho network induces cardioprotection. (d) The activation of cell survival PI3K/Akt1 pathway leads to phosphorylation of BAD. It exerts the separation of antiapoptotic proteins Bcl-XL and Bcl-2 and inhibits the activity of caspase-3. As a result, the apoptosis of cardiac cells is reduced. (e) FGFR1/FGF21/βKlotho signaling regulates genes encoding proteins involved in antioxidant pathways: UCP3 and SOD2. It decreases ROS production and oxidative stress in cardiac cells. (f) The main intracellular pathway responsible for FGFR1/FGF21/βKlotho action is ERK. PGC1α is a transcriptional coactivator of PPARγ, involved in the control of energy metabolism and oxidative stress. The activation of PGC1α represses expression of proinflammatory cytokines by targeting NF-κB signaling. It also enhances energy supply by regulation of cardiac lipid metabolism. BAD, Bcl-2-associated death promoter; ER, endoplasmic reticulum; ERK, extracellular signal regulated kinase; FGF21, fibroblast growth factor 21; FGFR1, fibroblast growth factor receptor 1; NF-κB, nuclear factor-kappa-B; PGC1α, PPARγ co-activator-1 α; PI3K/Akt1, phosphatidylinositol 3-kinase/Akt serine/threonine kinase 1; PPARα, peroxisome proliferator-activated receptor-α; ROS, reactive oxygen species; Sirt1, Sirtuin 1; SOD2, superoxide dismutase 2; UCP3, uncoupling protein 3; +, upregulation/increase; -, downregulation/decrease.

References

    1. Nichols M., Townsend N., Scarborough P., Rayner M. Cardiovascular disease in Europe 2014: epidemiological update. European Heart Journal. 2014;35(42):2950–2959. doi: 10.1093/eurheartj/ehu299.
    1. Corsetti G., Pasini E., Scarabelli T. M., et al. Decreased expression of Klotho in cardiac atria biopsy samples from patients at higher risk of atherosclerotic cardiovascular disease. Journal of Geriatric Cardiology. 2016;13(8):701–711.
    1. Kuro-o M., Matsumura Y., Aizawa H., et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature. 1997;390:45–51. doi: 10.1038/36285.
    1. Shiraki-Iida T., Aizawa H., Matsumura Y., et al. Structure of the mouse klotho gene and its two transcripts encoding membrane and secreted protein 1. FEBS Letters. 1998;424(1-2):6–10. doi: 10.1016/S0014-5793(98)00127-6.
    1. Matsumura Y., Aizawa H., Shiraki-Iida T., Nagai R., Kuro-O M., Nabeshima Y.-I. Identification of the human klotho gene and its two transcripts encoding membrane and secreted klotho protein. Biochemical and Biophysical Research Communications. 1998;242(3):626–630. doi: 10.1006/bbrc.1997.8019.
    1. Li S.-A., Watanabe M., Yamada H., Nagai A., Kinuta M., Takei K. Immunohistochemical localization of Klotho protein in brain, kidney, and reproductive organs of mice. Cell Structure and Function. 2004;29(4):91–99. doi: 10.1247/csf.29.91.
    1. Kim J., Hwang K., Park K., Kong I. D., Cha S. Biological Role of Anti-aging Protein Klotho. Journal of Lifestyle Medicine. 2015;5(1):1–6. doi: 10.15280/jlm.2015.5.1.1.
    1. Chen C.-D., Podvin S., Gillespie E., Leeman S. E., Abraham C. R. Insulin stimulates the cleavage and release of the extracellular domain of Klotho by ADAM10 and ADAM17. Proceedings of the National Acadamy of Sciences of the United States of America. 2007;104(50):19796–19801. doi: 10.1073/pnas.0709805104.
    1. Imura A., Iwano A., Tohyama O., et al. Secreted Klotho protein in sera and CSF: implication for post-translational cleavage in release of Klotho protein from cell membrane. FEBS Letters. 2004;565(1–3):143–147. doi: 10.1016/j.febslet.2004.03.090.
    1. Bloch L., Sineshchekova O., Reichenbach D., et al. Klotho is a substrate for α-, β- and γ-secretase. FEBS Letters. 2009;583(19):3221–3224. doi: 10.1016/j.febslet.2009.09.009.
    1. Doi S., Zou Y., Togao O., et al. Klotho inhibits transforming growth factor-β1 (TGF-β1) signaling and suppresses renal fibrosis and cancer metastasis in mice. The Journal of Biological Chemistry. 2011;286(10):8655–8665. doi: 10.1074/jbc.M110.174037.
    1. Cararo-Lopes M. M., Mazucanti C. H. Y., Scavone C., Kawamoto E. M., Berwick D. C. The relevance of α-KLOTHO to the central nervous system: Some key questions. Ageing Research Reviews. 2017;36:137–148. doi: 10.1016/j.arr.2017.03.003.
    1. Szymczak A., Forma E. Struktura i funkcje bialka Klotho. Folia Medica Lodz. 2012;39(2):151–187.
    1. Hu M. C., Shiizaki K., Kuro-O M., Moe O. W. Fibroblast growth factor 23 and klotho: physiology and pathophysiology of an endocrine network of mineral metabolism. Annual Review of Physiology. 2013;75:503–533. doi: 10.1146/annurev-physiol-030212-183727.
    1. Xu Y., Sun Z. Molecular basis of klotho: From gene to function in aging. Endocrine Reviews. 2015;36(2):174–193. doi: 10.1210/er.2013-1079.
    1. Xiao N., Zhang Y., Zheng Q., Gu J. Klotho is a serum factor related to human aging. Chinese Medical Journal. 2004;117(5):742–747.
    1. Kuro-o M. Klotho and the aging process. The Korean Journal of Internal Medicine. 2011;26(2):113–122. doi: 10.3904/kjim.2011.26.2.113.
    1. Yamazaki Y., Imura A., Urakawa I., et al. Establishment of sandwich ELISA for soluble alpha-Klotho measurement: age-dependent change of soluble alpha-Klotho levels in healthy subjects. Biochemical and Biophysical Research Communications. 2010;398(3):513–518. doi: 10.1016/j.bbrc.2010.06.110.
    1. Kato Y., Arakawa E., Kinoshita S., et al. Establishment of the anti-klotho monoclonal antibodies and detection of klotho protein in kidneys. Biochemical and Biophysical Research Communications. 2000;267(2):597–602. doi: 10.1006/bbrc.1999.2009.
    1. Tsujikawa H., Kurotaki Y., Fujimori T., Fukuda K., Nabeshima Y.-I. Klotho, a gene related to a syndrome resembling human premature aging, functions in a negative regulatory circuit of vitamin D endocrine system. Molecular Endocrinology. 2003;17(12):2393–2403. doi: 10.1210/me.2003-0048.
    1. Andrukhova O., Smorodchenko A., Egerbacher M., et al. FGF23 promotes renal calcium reabsorption through the TRPV5 channel. EMBO Journal. 2014;33(3):229–246. doi: 10.1002/embj.20128418.
    1. Abousaab A., Warsi J., Salker M. S., Lang F. β-Klotho as a Negative Regulator of the Peptide Transporters PEPT1 and PEPT2. Cellular Physiology and Biochemistry. 2016;40(5):874–882. doi: 10.1159/000453146.
    1. Ben-Dov I. Z., Galitzer H., Lavi-Moshayoff V., et al. The parathyroid is a target organ for FGF23 in rats. The Journal of Clinical Investigation. 2007;117(12):4003–4008. doi: 10.1172/JCI32409.
    1. Tohyama O., Imura A., Iwano A., et al. Klotho is a novel beta-glucuronidase capable of hydrolyzing steroid beta-glucuronides. The Journal of Biological Chemistry. 2004;279(11):9777–9784. doi: 10.1074/jbc.m312392200.
    1. Tan S., Smith E. R., Holt S. G., Hewitson T. D., Toussaint N. D. Soluble klotho may be a marker of phosphate reabsorption. Clinical Kidney Journal. 2017;10(3):397–404. doi: 10.1093/ckj/sfw146.
    1. Hoenderop J. G. J., Nilius B., Bindels R. J. M. Calcium absorption across epithelia. Physiological Reviews. 2005;85(1):373–422. doi: 10.1152/physrev.00003.2004.
    1. Lee W.-S., Hebert S. C. ROMK inwardly rectifying ATP-sensitive K+ channel. I. Expression in rat distal nephron segments. American Journal of Physiology - Renal Fluid and Electrolyte Physiology. 1995;268(6):F1124–F1131. doi: 10.1152/ajprenal.1995.268.6.F1124.
    1. Dong K., Yan Q., Lu M., et al. Romk1 knockout mice do not produce bartter phenotype but exhibit impaired K excretion. The Journal of Biological Chemistry. 2016;291(10):5259–5269. doi: 10.1074/jbc.M115.707877.
    1. Welling P. A., Ho K. A comprehensive guide to the ROMK potassium channel: form and function in health and disease. American Journal of Physiology-Renal Physiology. 2009;297(4):F849–F863. doi: 10.1152/ajprenal.00181.2009.
    1. Bhide G. P., Colley K. J. Sialylation of N-glycans: mechanism, cellular compartmentalization and function. Histochemistry and Cell Biology. 2017;147(2):149–174. doi: 10.1007/s00418-016-1520-x.
    1. Stanley P., Schachter H., Taniguchi N. N-Glycans. In: Varki A., Cummings R. D., Esko J. D., et al., editors. Essentials of Glycobiology. Cold Spring Harbor Laboratory Press; 2009.
    1. Cha S.-K., Hu M.-C., Kurosu H., Kuro-O M., Moe O., Huang C.-L. Regulation of renal outer medullary potassium channel and renal K + excretion by Klotho. Molecular Pharmacology. 2009;76(1):38–46. doi: 10.1124/mol.109.055780.
    1. Cha S.-K., Ortega B., Kurosu H., Rosenblatt K. P., Kuro M., Huang C.-L. Removal of sialic acid involving Klotho causes cell-surface retention of TRPV5 channel via binding to galectin-1. Proceedings of the National Acadamy of Sciences of the United States of America. 2008;105(28):9805–9810. doi: 10.1073/pnas.0803223105.
    1. Camby I., Le Mercier M., Lefranc F., Kiss R. Galectin-1: a small protein with major functions. Glycobiology. 2006;16(11):137R–157R. doi: 10.1093/glycob/cwl025.
    1. Wolf M. T. F., An S.-W., Nie M., Bal M. S., Huang C.-L. Klotho up-regulates renal calcium channel transient receptor potential vanilloid 5 (TRPV5) by intra- And extracellular N-glycosylation-dependent mechanisms. The Journal of Biological Chemistry. 2014;289(52):35849–35857. doi: 10.1074/jbc.M114.616649.
    1. Leunissen E. H. P., Nair A. V., Büll C., et al. The epithelial calcium channel TRPV5 is regulated differentially by klotho and sialidase. The Journal of Biological Chemistry. 2013;288(41):29238–29246. doi: 10.1074/jbc.M113.473520.
    1. Dalton G. D., Xie J., An S., Huang C. New Insights into the Mechanism of Action of Soluble Klotho. Frontiers in Endocrinology. 2017;8 doi: 10.3389/fendo.2017.00323.
    1. DeFronzo R. A., Felig P., Ferrannini E., Wahren J. Effect of graded doses of insulin on splanchnic and peripheral potassium metabolism in man. American Journal of Physiology-Endocrinology and Metabolism. 1980;238(5):E421–E427. doi: 10.1152/ajpendo.1980.238.5.E421.
    1. Kurosu H., Yamamoto M., Clark J. D., et al. Suppression of aging in mice by the hormone klotho. Science. 2005;309(5742):1829–1833. doi: 10.1126/science.1112766.
    1. Utsugi T., Ohno T., Ohyama Y., et al. Decreased insulin production and increased insulin sensitivity in the klotho mutant mouse, a novel animal model for human aging. Metabolism. 2000;49(9):1118–1123. doi: 10.1053/meta.2000.8606.
    1. Hu M. C., Shi M., Zhang J., et al. Renal production, uptake, and handling of circulating αKlotho. Journal of the American Society of Nephrology. 2015;27(1):79–90. doi: 10.1681/asn.2014101030.
    1. Hu M. C., Shi M., Zhang J., et al. Klotho: A novel phosphaturic substance acting as an autocrine enzyme in the renal proximal tubule. FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology. 2010;24(9):3438–3450. doi: 10.1096/fj.10-154765.
    1. Ogawa Y., Kurosu H., Yamamoto M., et al. βKlotho is required for metabolic activity of fibroblast growth factor 21. Proceedings of the National Acadamy of Sciences of the United States of America. 2007;104(18):7432–7437. doi: 10.1073/pnas.0701600104.
    1. Liu S. Q., Roberts D., Kharitonenkov A., et al. Endocrine protection of ischemic myocardium by FGF21 from the liver and adipose tissue. Scientific Reports. 2013;3, article no. 2767 doi: 10.1038/srep02767.
    1. Patel V., Adya R., Chen J., et al. Novel insights into the cardio-protective effects of FGF21 in lean and obese rat hearts. PLoS ONE. 2014;9(2) doi: 10.1371/journal.pone.0087102.e87102
    1. Lan T., Morgan D. A., Rahmouni K., et al. FGF19, FGF21, and an FGFR1/β-Klotho-activating antibody act on the nervous system to regulate body weight and glycemia. Cell Metabolism. 2017;26(5):709–718.e3. doi: 10.1016/j.cmet.2017.09.005.
    1. Yamamoto M., Clark J. D., Pastor J. V., et al. Regulation of oxidative stress by the anti-aging hormone klotho. The Journal of Biological Chemistry. 2005;280(45):38029–38034. doi: 10.1074/jbc.m509039200.
    1. Bartke A. Long-lived Klotho mice: new insights into the roles of IGF-1 and insulin in aging. Trends in Endocrinology & Metabolism. 2006;17(2):33–35. doi: 10.1016/j.tem.2006.01.002.
    1. Thurston R. D., Larmonier C. B., Majewski P. M., et al. Downregulation of aging-related Klotho gene in experimental colitis: the role of TNF and IFN-γ. Gastroenterology. 2010;138(4):1384–1394.e2. doi: 10.1053/j.gastro.2009.12.002.
    1. Zhang X., Yalcin S., Lee D.-F., et al. FOXO1 is an essential regulator of pluripotency in human embryonic stem cells. Nature Cell Biology. 2011;13(9):1092–1099. doi: 10.1038/ncb2293.
    1. Takenaka T., Kobori H., Inoue T., et al. [op.4b.02] klotho supplementation attenuates blood pressure and oxidative stress in diabetes. Journal of Hypertension. 2017;35:p. e38. doi: 10.1097/01.hjh.0000523076.42214.98.
    1. Lim S. W., Jin L., Luo K., et al. Klotho enhances FoxO3-mediated manganese superoxide dismutase expression by negatively regulating PI3K/AKT pathway during tacrolimus-induced oxidative stress. Cell Death & Disease. 2017;8(8)
    1. Mitobe M., Yoshida T., Sugiura H., Shirota S., Tsuchiya K., Nihei H. Oxidative stress decreases klotho expression in a mouse kidney cell line. Nephron Experimental Nephrology. 2005;101(2):e67–e74. doi: 10.1159/000086500.
    1. Sugiura H., Yoshida T., Tsuchiya K., et al. Klotho reduces apoptosis in experimental ischaemic acute renal failure. Nephrology Dialysis Transplantation . 2005;20(12):2636–2645. doi: 10.1093/ndt/gfi165.
    1. Oh H. J., Nam B. Y., Lee M. J. Decreased circulating Klotho levels in patients undergoing dialysis and relationship to oxidative stress and inflammation. Journal of the International Seociety for Peritoneal Dialysis. 2015;35(1):43–51. doi: 10.3747/pdi.2013.00150.
    1. Elghoroury E. A., Fadel F. I., Elshamaa M. F., et al. Klotho G-395A gene polymorphism: impact on progression of end-stage renal disease and development of cardiovascular complications in children on dialysis. Pediatric Nephrology. 2018:1–9. doi: 10.1007/s00467-017-3877-z.
    1. Kuro-o M. Klotho and aging. Biochimica et Biophysica Acta (BBA) - General Subjects. 2009;1790(10):1049–1058. doi: 10.1016/j.bbagen.2009.02.005.
    1. Arking D. E., Krebsova A., Macek M., Sr., et al. Association of human aging with a functional variant of klotho. Proceedings of the National Acadamy of Sciences of the United States of America. 2002;99(2):856–861. doi: 10.1073/pnas.022484299.
    1. Deary I. J., Harris S. E., Fox H. C., et al. KLOTHO genotype and cognitive ability in childhood and old age in the same individuals. Neuroscience Letters. 2005;378(1):22–27. doi: 10.1016/j.neulet.2004.12.005.
    1. Mengel-From J., Soerensen M., Nygaard M., McGue M., Christensen K., Christiansen L. Genetic variants in KLOTHO associate with cognitive function in the oldest old group. The Journals of Gerontology. Series A. 2016;71(9):1151–1159. doi: 10.1093/gerona/glv163.
    1. Marchelek-Myśliwiec M., Różański J., Ogrodowczyk A., et al. The association of the Klotho polymorphism rs9536314 with parameters of calcium-phosphate metabolism in patients on long-term hemodialysis. Renal Failure. 2016;38(5):776–780. doi: 10.3109/0886022X.2016.1162062.
    1. Arking D. E., Becker D. M., Yanek L. R., et al. KLOTHO allele status and the risk of early-onset occult coronary artery disease. American Journal of Human Genetics. 2003;72(5):1154–1161. doi: 10.1086/375035.
    1. Arking D. E., Atzmon G., Arking A., Barzilai N., Dietz H. C. Association between a functional variant of the KLOTHO gene and high-density lipoprotein cholesterol, blood pressure, stroke, and longevity. Circulation Research. 2005;96(4):412–418. doi: 10.1161/01.res.0000157171.04054.30.
    1. Oguro R., Kamide K., Kokubo Y., et al. Association of carotid atherosclerosis with genetic polymorphisms of the klotho gene in patients with hypertension. Geriatrics & Gerontology International. 2010;10(4):311–318. doi: 10.1111/j.1447-0594.2010.00612.x.
    1. Telci D., Dogan A. U., Ozbek E., et al. KLOTHO gene polymorphism of G395A is associated with kidney stones. American Journal of Nephrology. 2011;33(4):337–343. doi: 10.1159/000325505.
    1. Kawano K.-I., Ogata N., Chiano M., et al. Klotho gene polymorphisms associated with bone density of aged postmenopausal women. Journal of Bone and Mineral Research. 2002;17(10):1744–1751. doi: 10.1359/jbmr.2002.17.10.1744.
    1. Imamura A., Okumura K., Ogawa Y., et al. Klotho gene polymorphism may be a genetic risk factor for atherosclerotic coronary artery disease but not for vasospastic angina in Japanese. Clinica Chimica Acta. 2006;371(1-2):66–70. doi: 10.1016/j.cca.2006.02.021.
    1. Rhee E. J., Oh K. W., Yun E. J., et al. Relationship between polymorphisms G395A in promoter and C1818T in exon 4 of the KLOTHO gene with glucose metabolism and cardiovascular risk factors in Korean women. Journal of Endocrinological Investigation. 2006;29(7):613–618. doi: 10.1007/BF03344160.
    1. Semba R. D., Cappola A. R., Sun K., et al. Plasma klotho and cardiovascular disease in adults. Journal of the American Geriatrics Society. 2011;59(9):1596–1601. doi: 10.1111/j.1532-5415.2011.03558.x.
    1. Keles N., Caliskan M., Dogan B., et al. Low serum level of Klotho is an early predictor of atherosclerosis. The Tohoku Journal of Experimental Medicine. 2015;237(1):17–23. doi: 10.1620/tjem.237.17.
    1. Keusch G., Boengler K., Schulz R. Cardioprotection: nitric oxide, protein kinases, and mitochondria. Circulation. 2008;118(19):1915–1919. doi: 10.1161/CIRCULATIONAHA.108.805242.
    1. Mungrue I. N., Gros R., You X., et al. Cardiomyocyte overexpression of iNOS in mice results in peroxynitrite generation, heart block, and sudden death. The Journal of Clinical Investigation. 2002;109(6):735–743. doi: 10.1172/JCI200213265.
    1. Förstermann U., Sessa W. C. Nitric oxide synthases: regulation and function. European Heart Journal. 2012;33(7):829–837. doi: 10.1093/eurheartj/ehr304.
    1. Dias A. S., Porawski M., Alonso M., Marroni N., Collado P. S., González-Gallego J. Quercetin decreases oxidative stress, NF-κB activation, and iNOS overexpression in liver of streptozotocin-induced diabetic rats. Journal of Nutrition. 2005;135(10):2299–2304. doi: 10.1093/jn/135.10.2299.
    1. Krause M., Heck T. G., Bittencourt A., Scomazzon S. P., Newsholme P., Curi R. The Chaperone Balance Hypothesis: The Importance of the Extracellular to Intracellular HSP70 Ratio to Inflammation-Driven Type 2 Diabetes, the Effect of Exercise, and the Implications for Clinical Management. Mediators of Inflammation. 2015;2015:12. doi: 10.1155/2015/249205.249205
    1. Drew D. A., Katz R., Kritchevsky S., et al. Association between soluble klotho and change in kidney function: The health aging and body composition study. Journal of the American Society of Nephrology. 2017;28(6):1859–1866. doi: 10.1681/ASN.2016080828.
    1. Hu M. C., Shi M., Gillings N., et al. Recombinant α-Klotho may be prophylactic and therapeutic for acute to chronic kidney disease progression and uremic cardiomyopathy. Kidney International. 2017;91(5):1104–1114. doi: 10.1016/j.kint.2016.10.034.
    1. Marçais C., Maucort-Boulch D., Drai J., et al. Circulating klotho associates with cardiovascular morbidity and mortality during hemodialysis. The Journal of Clinical Endocrinology & Metabolism. 2017;102(9):3154–3161. doi: 10.1210/jc.2017-00104.
    1. Ene-Iordache B., Perico N., Bikbov B., et al. Chronic kidney disease and cardiovascular risk in six regions of the world (ISN-KDDC): A cross-sectional study. The Lancet Global Health. 2016;4(5):e307–e319. doi: 10.1016/S2214-109X(16)00071-1.
    1. Takeshita K., Fujimori T., Kurotaki Y., et al. Sinoatrial Node Dysfunction and Early Unexpected Death of Mice with a Defect of klotho Gene Expression. Circulation. 2004;109(14):1776–1782. doi: 10.1161/01.CIR.0000124224.48962.32.
    1. Zhou H., Li H., Shi M., et al. Protective Effect of Klotho against Ischemic Brain Injury Is Associated with Inhibition of RIG-I/NF-κB Signaling. Frontiers in Pharmacology. 2018;8 doi: 10.3389/fphar.2017.00950.
    1. Shi M., Flores B., Gillings N., et al. αklotho mitigates progression of aki to ckd through activation of autophagy. Journal of the American Society of Nephrology. 2016;27(8):2331–2345. doi: 10.1681/ASN.2015060613.
    1. Neyra J. A., Hu M. C. Potential application of klotho in human chronic kidney disease. Bone. 2017;100:41–49. doi: 10.1016/j.bone.2017.01.017.
    1. Hui H., Zhai Y., Ao L., et al. Klotho suppresses the inflammatory responses and ameliorates cardiac dysfunction in aging endotoxemic mice. Oncotarget . 2017;8(9):15663–15676.
    1. Guo Y., Zhuang X., Huang Z., et al. Klotho protects the heart from hyperglycemia-induced injury by inactivating ROS and NF-κB-mediated inflammation both in vitro and in vivo. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 2018;1864(1):238–251. doi: 10.1016/j.bbadis.2017.09.029.
    1. Nguyen T., Nioi P., Pickett C. B. The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. The Journal of Biological Chemistry. 2009;284(20):13291–13295. doi: 10.1074/jbc.R900010200.
    1. Hondares E., Iglesias R., Giralt A., et al. Thermogenic activation induces FGF21 expression and release in brown adipose tissue. The Journal of Biological Chemistry. 2011;286(15):12983–12990. doi: 10.1074/jbc.M110.215889.
    1. Badman M. K., Pissios P., Kennedy A. R., Koukos G., Flier J. S., Maratos-Flier E. Hepatic fibroblast growth factor 21 is regulated by PPARα and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metabolism. 2007;5(6):426–437. doi: 10.1016/j.cmet.2007.05.002.
    1. Planavila A., Redondo I., Hondares E., et al. Fibroblast growth factor 21 protects against cardiac hypertrophy in mice. Nature Communications. 2013;4:p. 2019. doi: 10.1038/ncomms3019.
    1. Planavila A., Redondo-Angulo I., Ribas F., et al. Fibroblast growth factor 21 protects the heart from oxidative stress. Cardiovascular Research. 2015;106(1):19–31. doi: 10.1093/cvr/cvu263.
    1. Brahma M. K., Adam R. C., Pollak N. M., et al. Fibroblast growth factor 21 is induced upon cardiac stress and alters cardiac lipid homeostasis. Journal of Lipid Research. 2014;55(11):2229–2241. doi: 10.1194/jlr.M044784.
    1. Zhang C., Huang Z., Gu J., et al. Fibroblast growth factor 21 protects the heart from apoptosis in a diabetic mouse model via extracellular signal-regulated kinase 1/2-dependent signalling pathway. Diabetologia. 2015;58(8):1937–1948. doi: 10.1007/s00125-015-3630-8.
    1. Planavila A., Iglesias R., Giralt M., Villarroya F. Sirt1 acts in association with PPARα to protect the heart from hypertrophy, metabolic dysregulation, and inflammation. Cardiovascular Research. 2011;90(2):276–284. doi: 10.1093/cvr/cvq376.
    1. Roy S. K., Srivastava R. K., Shankar S. Inhibition of PI3K/AKT and MAPK/ERK pathways causes activation of FOXO transcription factor, leading to cell cycle arrest and apoptosis in pancreatic cancer. Journal of Molecular Signaling. 2010;5:p. 10. doi: 10.1186/1750-2187-5-10.
    1. Liang P., Zhong L., Gong L., et al. Fibroblast growth factor 21 protects rat cardiomyocytes from endoplasmic reticulum stress by promoting the fibroblast growth factor receptor 1-extracellular signal-regulated kinase 1/2 signaling pathway. International Journal of Molecular Medicine. 2017;40(5):1477–1485. doi: 10.3892/ijmm.2017.3140.
    1. Wang S., Wang Y., Zhang Z., Liu Q., Gu J. Cardioprotective effects of fibroblast growth factor 21 against doxorubicin-induced toxicity via the SIRT1/LKB1/AMPK pathway. Cell Death & Disease. 2017;8(8):p. e3018. doi: 10.1038/cddis.2017.410.
    1. Cong W.-T., Ling J., Tian H.-S., et al. Proteomic study on the protective mechanism of fibroblast growth factor 21 to ischemia-reperfusion injury. Canadian Journal of Physiology and Pharmacology. 2013;91(11):973–984. doi: 10.1139/cjpp-2012-0441.
    1. Adams A. C., Cheng C. C., Coskun T., Kharitonenkov A. FGF21 Requires βklotho to Act In Vivo. PLoS ONE. 2012;7(11)
    1. Gallego-Escuredo J. M., Gómez-Ambrosi J., Catalan V., et al. Opposite alterations in FGF21 and FGF19 levels and disturbed expression of the receptor machinery for endocrine FGFs in obese patients. International Journal of Obesity. 2015;39(1):121–129. doi: 10.1038/ijo.2014.76.
    1. Fisher F. M., Chui P. C., Antonellis P. J., et al. Obesity is a fibroblast growth factor 21 (FGF21)-resistant state. Diabetes. 2010;59(11):2781–2789. doi: 10.2337/db10-0193.
    1. Díaz-Delfín J., Hondares E., Iglesias R., Giralt M., Caelles C., Villarroya F. TNF-α represses β-klotho expression and impairs FGF21 action in adipose cells: Involvement of JNK1 in the FGF21 pathway. Endocrinology. 2012;153(9):4238–4245. doi: 10.1210/en.2012-1193.
    1. Tanajak P., Sa-Nguanmoo P., Wang X., et al. Fibroblast growth factor 21 (FGF21) therapy attenuates left ventricular dysfunction and metabolic disturbance by improving FGF21 sensitivity, cardiac mitochondrial redox homoeostasis and structural changes in pre-diabetic rats. Acta Physiologica. 2016;217(4):287–299. doi: 10.1111/apha.12698.
    1. Joki Y., Ohashi K., Yuasa D., et al. FGF21 attenuates pathological myocardial remodeling following myocardial infarction through the adiponectin-dependent mechanism. Biochemical and Biophysical Research Communications. 2015;459(1):124–130. doi: 10.1016/j.bbrc.2015.02.081.
    1. Chau M. D. L., Gao J., Yang Q., Wu Z., Gromada J. Fibroblast growth factor 21 regulates energy metabolism by activating the AMPK-SIRT1-PGC-1α pathway. Proceedings of the National Acadamy of Sciences of the United States of America. 2010;107(28):12553–12558. doi: 10.1073/pnas.1006962107.
    1. Lehman J. J., Kelly D. P. Transcriptional activation of energy metabolic switches in the developing and hypertrophied heart. Clinical and Experimental Pharmacology and Physiology. 2002;29(4):339–345. doi: 10.1046/j.1440-1681.2002.03655.x.
    1. Ventura-Clapier R., Garnier A., Veksler V. Transcriptional control of mitochondrial biogenesis: the central role of PGC-1α. Cardiovascular Research. 2008;79(2):208–217. doi: 10.1093/cvr/cvn098.
    1. Eisele P. S., Salatino S., Sobek J., Hottiger M. O., Handschin C. The peroxisome proliferator-activated receptor γ coactivator 1α/β (PGC-1) coactivators repress the transcriptional activity of NF-κB in skeletal muscle cells. The Journal of Biological Chemistry. 2013;288(4):2246–2260. doi: 10.1074/jbc.M112.375253.
    1. Song S., Gao P., Xiao H., Xu Y., Si L. Y. Klotho suppresses cardiomyocyte apoptosis in mice with stress-induced cardiac injury via downregulation of endoplasmic reticulum stress. PLoS ONE. 2013;8(12)e82968
    1. Song S., Si L.-Y. Klotho ameliorated isoproterenol-induced pathological changes in cardiomyocytes via the regulation of oxidative stress. Life Sciences. 2015;135:118–123. doi: 10.1016/j.lfs.2015.05.024.
    1. Xie J., Cha S.-K., An S.-W., Kuro-O M., Birnbaumer L., Huang C.-L. Cardioprotection by Klotho through downregulation of TRPC6 channels in the mouse heart. Nature Communications. 2012;3:p. 1238.
    1. Wu X., Eder P., Chang B., Molkentin J. D. TRPC channels are necessary mediators of pathologic cardiac hypertrophy. Proceedings of the National Acadamy of Sciences of the United States of America. 2010;107(15):7000–7005. doi: 10.1073/pnas.1001825107.
    1. Bush E. W., Hood D. B., Papst P. J., et al. Canonical transient receptor potential channels promote cardiomyocyte hypertrophy through activation of calcineurin signaling. The Journal of Biological Chemistry. 2006;281(44):33487–33496. doi: 10.1074/jbc.M605536200.
    1. Sabourin J., Robin E., Raddatz E. A key role of TRPC channels in the regulation of electromechanical activity of the developing heart. Cardiovascular Research. 2011;92(2):226–236. doi: 10.1093/cvr/cvr167.
    1. Yang K., Wang C., Nie L., et al. Klotho protects against indoxyl sulphate-induced myocardial hypertrophy. Journal of the American Society of Nephrology. 2015;26(10):2434–2446. doi: 10.1681/asn.2014060543.
    1. Barreto F. C., Barreto D. V., Liabeuf S., et al. Serum indoxyl sulfate is associated with vascular disease and mortality in chronic kidney disease patients. Clinical Journal of the American Society of Nephrology. 2009;4(10):1551–1558. doi: 10.2215/CJN.03980609.
    1. Paula R. S., Souza V. C., Machado-Silva W., et al. Serum Klotho (but not haplotypes) associate with the post-myocardial infarction status of older adults. Clinics. 2016;71(12):725–732. doi: 10.6061/clinics/2016(12)09.
    1. Hu M. C., Shi M., Zhang J., et al. Klotho deficiency causes vascular calcification in chronic kidney disease. Journal of the American Society of Nephrology. 2011;22(1):124–136. doi: 10.1681/ASN.2009121311.
    1. Zhao Y., Banerjee S., Dey N., et al. Klotho depletion contributes to increased inflammation in kidney of the db/db mouse model of diabetes via RelA (serine)536 phosphorylation. Diabetes. 2011;60(7):1907–1916. doi: 10.2337/db10-1262.
    1. Hu M.-C., Kuro-o M., Moe O. W. Klotho and kidney disease. Journal of Nephrology. 2010;23(supp 16):S136–S144.
    1. Levey A. S., Atkins R., Coresh J., et al. Chronic kidney disease as a global public health problem: approaches and initiatives—a position statement from kidney disease improving global outcomes. Kidney International. 2007;72(3):247–259. doi: 10.1038/sj.ki.5002343.
    1. Castellano G., Intini A., Stasi A., et al. Complement modulation of anti-aging factor klotho in ischemia/reperfusion injury and delayed graft function. American Journal of Transplantation. 2016;16(1):325–333. doi: 10.1111/ajt.13415.
    1. Aizawa H., Saito Y., Nakamura T., et al. Downregulation of the klotho gene in the kidney under sustained circulatory stress in rats. Biochemical and Biophysical Research Communications. 1998;249(3):865–871. doi: 10.1006/bbrc.1998.9246.
    1. Haruna Y., Kashihara N., Satoh M., et al. Amelioration of progressive renal injury by genetic manipulation of Klotho gene. Proceedings of the National Acadamy of Sciences of the United States of America. 2007;104(7):2331–2336. doi: 10.1073/pnas.0611079104.
    1. Weber K. T. Fibrosis and hypertensive heart disease. Current Opinion in Cardiology. 2000;15(4):264–272. doi: 10.1097/00001573-200007000-00010.
    1. Liu X., Chen Y., Mccoy C. W., et al. Differential regulatory role of soluble klothos on cardiac fibrogenesis in hypertension. American Journal of Hypertension. 2016;29(10):1140–1147. doi: 10.1093/ajh/hpw062.
    1. Weber K. T. Fibrosis in hypertensive heart disease: Focus on cardiac fibroblasts. Journal of Hypertension. 2004;22(1):47–50. doi: 10.1097/00004872-200401000-00011.
    1. Van Den Borne S. W. M., Diez J., Blankesteijn W. M., Verjans J., Hofstra L., Narula J. Myocardial remodeling after infarction: the role of myofibroblasts. Nature Reviews Cardiology. 2010;7(1):30–37. doi: 10.1038/nrcardio.2009.199.
    1. Shalhoub V., Ward S. C., Sun B., et al. Fibroblast growth factor 23 (FGF23) and α-klotho stimulate osteoblastic MC3T3.E1 cell proliferation and inhibit mineralization. Calcified Tissue International. 2011;89(2):140–150. doi: 10.1007/s00223-011-9501-5.
    1. Medici D., Razzaque M. S., DeLuca S., et al. FGF-23-Klotho signaling stimulates proliferation and prevents vitamin D-induced apoptosis. The Journal of Cell Biology. 2008;182(3):459–465. doi: 10.1083/jcb.200803024.
    1. Lin Y., Sun Z. Antiaging gene Klotho enhances glucose-induced insulin secretion by up-regulating plasma membrane levels of TRPV2 in MIN6 β-cells. Endocrinology. 2012;153(7):3029–3039. doi: 10.1210/en.2012-1091.
    1. Lin Y., Sun Z. In vivo pancreatic β-cell-specific expression of antiaging gene Klotho: a novel approach for preserving β-cells in type 2 diabetes. Diabetes. 2015;64(4):1444–1458. doi: 10.2337/db14-0632.
    1. Fan J., Sun Z. The antiaging gene klotho regulates proliferation and differentiation of adipose-derived stem cells. Stem Cells. 2016;34(6):1615–1625. doi: 10.1002/stem.2305.
    1. Lim K., Lu T., Molostvov G., et al. Vascular klotho deficiency potentiates the development of human artery calcification and mediates resistance to fibroblast growth factor 23. Circulation. 2012;125(18):2243–2255. doi: 10.1161/CIRCULATIONAHA.111.053405.
    1. Olauson H., Vervloet M. G., Cozzolino M., Massy Z. A., Torres P. U., Larsson T. E. New insights into the FGF23-Klotho axis. Seminars in Nephrology. 2014;34(6):586–597. doi: 10.1016/j.semnephrol.2014.09.005.
    1. Richter B., Haller J., Haffner D., Leifheit-Nestler M. Klotho modulates FGF23-mediated NO synthesis and oxidative stress in human coronary artery endothelial cells. Pflügers Archiv - European Journal of Physiology. 2016;468(9):1621–1635. doi: 10.1007/s00424-016-1858-x.
    1. Yao Y., Wang Y., Zhang Y., Liu C. Klotho ameliorates oxidized low density lipoprotein (ox-LDL)-induced oxidative stress via regulating LOX-1 and PI3K/Akt/eNOS pathways. Lipids in Health and Disease. 2017;16(1)

Source: PubMed

3
Prenumerera