Endogenous Calcification Inhibitors in the Prevention of Vascular Calcification: A Consensus Statement From the COST Action EuroSoftCalcNet

Magnus Bäck, Tamas Aranyi, M Leonor Cancela, Miguel Carracedo, Natércia Conceição, Georges Leftheriotis, Vicky Macrae, Ludovic Martin, Yvonne Nitschke, Andreas Pasch, Daniela Quaglino, Frank Rutsch, Catherine Shanahan, Victor Sorribas, Flora Szeri, Pedro Valdivielso, Olivier Vanakker, Hervé Kempf, Magnus Bäck, Tamas Aranyi, M Leonor Cancela, Miguel Carracedo, Natércia Conceição, Georges Leftheriotis, Vicky Macrae, Ludovic Martin, Yvonne Nitschke, Andreas Pasch, Daniela Quaglino, Frank Rutsch, Catherine Shanahan, Victor Sorribas, Flora Szeri, Pedro Valdivielso, Olivier Vanakker, Hervé Kempf

Abstract

The physicochemical deposition of calcium-phosphate in the arterial wall is prevented by calcification inhibitors. Studies in cohorts of patients with rare genetic diseases have shed light on the consequences of loss-of-function mutations for different calcification inhibitors, and genetic targeting of these pathways in mice have generated a clearer picture on the mechanisms involved. For example, generalized arterial calcification of infancy (GACI) is caused by mutations in the enzyme ecto-nucleotide pyrophosphatase/phosphodiesterase-1 (eNPP1), preventing the hydrolysis of ATP into pyrophosphate (PPi). The importance of PPi for inhibiting arterial calcification has been reinforced by the protective effects of PPi in various mouse models displaying ectopic calcifications. Besides PPi, Matrix Gla Protein (MGP) has been shown to be another potent calcification inhibitor as Keutel patients carrying a mutation in the encoding gene or Mgp-deficient mice develop spontaneous calcification of the arterial media. Whereas PPi and MGP represent locally produced calcification inhibitors, also systemic factors contribute to protection against arterial calcification. One such example is Fetuin-A, which is mainly produced in the liver and which forms calciprotein particles (CPPs), inhibiting growth of calcium-phosphate crystals in the blood and thereby preventing their soft tissue deposition. Other calcification inhibitors with potential importance for arterial calcification include osteoprotegerin, osteopontin, and klotho. The aim of the present review is to outline the latest insights into how different calcification inhibitors prevent arterial calcification both under physiological conditions and in the case of disturbed calcium-phosphate balance, and to provide a consensus statement on their potential therapeutic role for arterial calcification.

Keywords: arterial calcification; fetuin; gla proteins; klotho; osteopontin; osteoprotegerin; pyrophosphate.

References

    1. Rashdan NA, Rutsch F, Kempf H, Varadi A, Leftheriotis G, MacRae VE. New perspectives on rare connective tissue calcifying diseases. Curr Opin Pharmacol. (2016) 28:14–23. 10.1016/j.coph.2016.02.002
    1. Fleisch H, Bisaz S. Mechanism of calcification: inhibitory role of pyrophosphate. Nature (1962) 195:911. 10.1038/195911a0
    1. Lomashvili KA, Narisawa S, Millan JL, O'Neill WC. Vascular calcification is dependent on plasma levels of pyrophosphate. Kidney Int. (2014) 85:1351–6. 10.1038/ki.2013.521
    1. Ho AM, Johnson MD, Kingsley DM. Role of the mouse ank gene in control of tissue calcification and arthritis. Science (2000) 289:265–70. 10.1126/science.289.5477.265
    1. Jansen RS, Duijst S, Mahakena S, Sommer D, Szeri F, Varadi A, et al. . ABCC6-mediated ATP secretion by the liver is the main source of the mineralization inhibitor inorganic pyrophosphate in the systemic circulation-brief report. Arterioscler Thromb Vasc Biol. (2014) 34:1985–9. 10.1161/ATVBAHA.114.304017
    1. Hortells L, Sosa C, Millan A, Sorribas V. Critical parameters of the in vitro method of vascular smooth muscle cell calcification. PLoS ONE (2015) 10:e0141751. 10.1371/journal.pone.0141751
    1. O'Neill WC. The fallacy of the calcium-phosphorus product. Kidney Int. (2007) 72:792–6. 10.1038/sj.ki.5002412
    1. Fleisch H, Russell RG, Straumann F. Effect of pyrophosphate on hydroxyapatite and its implications in calcium homeostasis. Nature (1966) 212:901–3. 10.1038/212901a0
    1. Lomashvili KA, Khawandi W, O'Neill WC. Reduced plasma pyrophosphate levels in hemodialysis patients. J Am Soc Nephrol. (2005) 16:2495–500. 10.1681/ASN.2004080694
    1. Sheen CR, Kuss P, Narisawa S, Yadav MC, Nigro J, Wang W, et al. . Pathophysiological role of vascular smooth muscle alkaline phosphatase in medial artery calcification. J Bone Miner Res. (2015) 30:824–36. 10.1002/jbmr.2420
    1. Lomashvili KA, Garg P, Narisawa S, Millan JL, O'Neill WC. Upregulation of alkaline phosphatase and pyrophosphate hydrolysis: potential mechanism for uremic vascular calcification. Kidney Int. (2008) 73:1024–30. 10.1038/ki.2008.26
    1. Hortells L, Sosa C, Guillen N, Lucea S, Millan A, Sorribas V. Identifying early pathogenic events during vascular calcification in uremic rats. Kidney Int. (2017) 92:1384–94. 10.1016/j.kint.2017.06.019
    1. Jansen RS, Kucukosmanoglu A, de Haas M, Sapthu S, Otero JA, Hegman IE, et al. . ABCC6 prevents ectopic mineralization seen in pseudoxanthoma elasticum by inducing cellular nucleotide release. Proc Natl Acad Sci USA. (2013) 110:20206–11. 10.1073/pnas.1319582110
    1. Kauffenstein G, Pizard A, Le Corre Y, Vessieres E, Grimaud L, Toutain B, et al. . Disseminated arterial calcification and enhanced myogenic response are associated with abcc6 deficiency in a mouse model of pseudoxanthoma elasticum. Arterioscler Thromb Vasc Biol. (2014) 34:1045–56. 10.1161/ATVBAHA.113.302943
    1. Mackenzie NC, Zhu D, Milne EM, van't Hof R, Martin A, Darryl Quarles L, et al. . Altered bone development and an increase in FGF-23 expression in Enpp1(-/-) mice. PLoS ONE (2012) 7:e32177. 10.1371/journal.pone.0032177
    1. Okawa A, Nakamura I, Goto S, Moriya H, Nakamura Y, Ikegawa S. Mutation in Npps in a mouse model of ossification of the posterior longitudinal ligament of the spine. Nat Genet. (1998) 19:271–3. 10.1038/956
    1. Li Q, Sundberg JP, Levine MA, Terry SF, Uitto J. The effects of bisphosphonates on ectopic soft tissue mineralization caused by mutations in the ABCC6 gene. Cell Cycle (2015) 14:1082–9. 10.1080/15384101.2015.1007809
    1. Harmey D, Hessle L, Narisawa S, Johnson KA, Terkeltaub R, Millan JL. Concerted regulation of inorganic pyrophosphate and osteopontin by akp2, enpp1, and ank: an integrated model of the pathogenesis of mineralization disorders. Am J Pathol. (2004) 164:1199–209. 10.1016/S0002-9440(10)63208-7
    1. O'Neill WC, Lomashvili KA, Malluche HH, Faugere MC, Riser BL. Treatment with pyrophosphate inhibits uremic vascular calcification. Kidney Int. (2011) 79:512–7. 10.1038/ki.2010.461
    1. Dedinszki D, Szeri F, Kozak E, Pomozi V, Tokesi N, Mezei TR, et al. . Oral administration of pyrophosphate inhibits connective tissue calcification. EMBO Mol Med. (2017) 9:1463–70. 10.15252/emmm.201707532
    1. Cancela ML, Conceicao N, Laize V. Gla-rich protein, a new player in tissue calcification? Adv Nutr. (2012) 3:174–81. 10.3945/an.111.001685
    1. Cancela ML, Laize V, Conceicao N. Matrix Gla protein and osteocalcin: from gene duplication to neofunctionalization. Arch Biochem Biophys. (2014) 561:56–63. 10.1016/j.abb.2014.07.020
    1. Cranenburg EC, Koos R, Schurgers LJ, Magdeleyns EJ, Schoonbrood TH, Landewe RB, et al. Characterization and potential diagnostic value of circulating matrix Gla protein (MGP) species. Thromb Haemost. (2010) 104:811–22. 10.1160/TH09-11-0786
    1. Cranenburg EC, Vermeer C, Koos R, Boumans ML, Hackeng TM, Bouwman FG, et al. . The circulating inactive form of matrix Gla Protein (ucMGP) as a biomarker for cardiovascular calcification. J Vasc Res. (2008) 45:427–36. 10.1159/000124863
    1. Boraldi F, Garcia-Fernandez M, Paolinelli-Devincenzi C, Annovi G, Schurgers L, Vermeer C, et al. . Ectopic calcification in beta-thalassemia patients is associated with increased oxidative stress and lower MGP carboxylation. Biochim Biophys Acta (2013) 1832:2077–84. 10.1016/j.bbadis.2013.07.017
    1. Gheduzzi D, Boraldi F, Annovi G, DeVincenzi CP, Schurgers LJ, Vermeer C, et al. . Matrix Gla protein is involved in elastic fiber calcification in the dermis of pseudoxanthoma elasticum patients. Lab Invest. (2007) 87:998–1008. 10.1038/labinvest.3700667
    1. Vanakker OM, Martin L, Schurgers LJ, Quaglino D, Costrop L, Vermeer C, et al. . Low serum vitamin K in PXE results in defective carboxylation of mineralization inhibitors similar to the GGCX mutations in the PXE-like syndrome. Lab Invest. (2010) 90:895–905. 10.1038/labinvest.2010.68
    1. Luo G, Ducy P, McKee MD, Pinero GJ, Loyer E, Behringer RR, et al. . Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature (1997) 386:78–81. 10.1038/386078a0
    1. Khosroshahi HE, Sahin SC, Akyuz Y, Ede H. Long term follow-up of four patients with Keutel syndrome. Am J Med Genet A (2014) 164A:2849–56. 10.1002/ajmg.a.36699
    1. Marulanda J, Eimar H, McKee MD, Berkvens M, Nelea V, Roman H, et al. . Matrix Gla protein deficiency impairs nasal septum growth, causing midface hypoplasia. J Biol Chem. (2017) 292:11400–12. 10.1074/jbc.M116.769802
    1. Munroe PB, Olgunturk RO, Fryns JP, Van Maldergem L, Ziereisen F, Yuksel B, et al. . Mutations in the gene encoding the human matrix Gla protein cause Keutel syndrome. Nat Genet. (1999) 21:142–4. 10.1038/5102
    1. Bjorklund G, Svanberg E, Dadar M, Card DJ, Chirumbolo S, Harrington DJ, et al. . The role of matrix Gla protein (MGP) in vascular calcification. Curr Med Chem. (2018) 10.2174/0929867325666180716104159. [Epub ahead of print].
    1. Kaartinen MT, Murshed M, Karsenty G, McKee MD. Osteopontin upregulation and polymerization by transglutaminase 2 in calcified arteries of Matrix Gla protein–deficient mice. J Histochem Cytochem. (2007) 55:375–86. 10.1369/jhc.6A7087.2006
    1. Schurgers LJ, Barreto DV, Barreto FC, Liabeuf S, Renard C, Magdeleyns EJ, et al. . The circulating inactive form of matrix gla protein is a surrogate marker for vascular calcification in chronic kidney disease: a preliminary report. Clin J Am Soc Nephrol. (2010) 5:568–75. 10.2215/CJN.07081009
    1. van den Heuvel EG, van Schoor NM, Lips P, Magdeleyns EJ, Deeg DJ, Vermeer C, et al. . Circulating uncarboxylated matrix Gla protein, a marker of vitamin K status, as a risk factor of cardiovascular disease. Maturitas (2014) 77:137–41. 10.1016/j.maturitas.2013.10.008
    1. Ueland T, Gullestad L, Dahl CP, Aukrust P, Aakhus S, Solberg OG, et al. . Undercarboxylated matrix Gla protein is associated with indices of heart failure and mortality in symptomatic aortic stenosis. J Intern Med. (2010) 268:483–92. 10.1111/j.1365-2796.2010.02264.x
    1. Bordoloi J, Dihingia A, Kalita J, Manna P. Implication of a novel vitamin K dependent protein, GRP/Ucma in the pathophysiological conditions associated with vascular and soft tissue calcification, osteoarthritis, inflammation, and carcinoma. Int J Biol Macromol. (2018) 113:309–16. 10.1016/j.ijbiomac.2018.02.150
    1. Willems BA, Furmanik M, Caron MMJ, Chatrou MLL, Kusters DHM, Welting TJM, et al. . Ucma/GRP inhibits phosphate-induced vascular smooth muscle cell calcification via SMAD-dependent BMP signalling. Sci Rep. (2018) 8:4961. 10.1038/s41598-018-23353-y
    1. Eitzinger N, Surmann-Schmitt C, Bosl M, Schett G, Engelke K, Hess A, et al. Ucma is not necessary for normal development of the mouse skeleton. Bone (2012) 50:670–80. 10.1016/j.bone.2011.11.017
    1. Pedersen KO. Fetuin, a new globulin isolated from serum. Nature (1944) 154:575 10.1038/154575a0
    1. Heremans JF. Les Globulines Sérique du Systéme Gamma. Brussels: Arscia; (1960).
    1. Schmid K, Burgi W. Preparation and properties of the human plasma Ba-alpha2-glycoproteins. Biochim Biophys Acta (1961) 47:440–53. 10.1016/0006-3002(61)90539-X
    1. Heiss A, DuChesne A, Denecke B, Grotzinger J, Yamamoto K, Renne T, et al. . Structural basis of calcification inhibition by alpha 2-HS glycoprotein/fetuin-A. Formation of colloidal calciprotein particles. J Biol Chem. (2003) 278:13333–41. 10.1074/jbc.M210868200
    1. Heiss A, Eckert T, Aretz A, Richtering W, van Dorp W, Schafer C, et al. . Hierarchical role of fetuin-A and acidic serum proteins in the formation and stabilization of calcium phosphate particles. J Biol Chem. (2008) 283:14815–25. 10.1074/jbc.M709938200
    1. Heiss A, Jahnen-Dechent W, Endo H, Schwahn D. Structural dynamics of a colloidal protein-mineral complex bestowing on calcium phosphate a high solubility in biological fluids. Biointerphases (2007) 2:16–20. 10.1116/1.2714924
    1. Schinke T, Amendt C, Trindl A, Poschke O, Muller-Esterl W, Jahnen-Dechent W. The serum protein alpha2-HS glycoprotein/fetuin inhibits apatite formation in vitro and in mineralizing calvaria cells. A possible role in mineralization and calcium homeostasis. J Biol Chem. (1996) 271:20789–96.
    1. Wald J, Wiese S, Eckert T, Jahnen-Dechent W, Richtering W, Heiss A. Formation and stability kinetics of calcium phosphate–fetuin-A colloidal particles probed by time-resolved dynamic light scattering. Soft Matter (2011) 7:2869–74. 10.1039/c0sm01191f
    1. Holt SG, Smith ER. Fetuin-A-containing calciprotein particles in mineral trafficking and vascular disease. Nephrol Dial Transplant. (2016) 31:1583–7. 10.1093/ndt/gfw048
    1. Smith ER, Hewitson TD, Cai MMX, Aghagolzadeh P, Bachtler M, Pasch A, et al. . A novel fluorescent probe-based flow cytometric assay for mineral-containing nanoparticles in serum. Sci Rep. (2017) 7:5686. 10.1038/s41598-017-05474-y
    1. Miura Y, Iwazu Y, Shiizaki K, Akimoto T, Kotani K, Kurabayashi M, et al. . Identification and quantification of plasma calciprotein particles with distinct physical properties in patients with chronic kidney disease. Sci Rep. (2018) 8:1256. 10.1038/s41598-018-19677-4
    1. Schafer C, Heiss A, Schwarz A, Westenfeld R, Ketteler M, Floege J, et al. . The serum protein alpha 2-Heremans-Schmid glycoprotein/fetuin-A is a systemically acting inhibitor of ectopic calcification. J Clin Invest. (2003) 112:357–66. 10.1172/JCI17202
    1. Gangneux C, Daveau M, Hiron M, Derambure C, Papaconstantinou J, Salier JP. The inflammation-induced down-regulation of plasma Fetuin-A (alpha2HS-Glycoprotein) in liver results from the loss of interaction between long C/EBP isoforms at two neighbouring binding sites. Nucleic Acids Res. (2003) 31:5957–70. 10.1093/nar/gkg788
    1. Jensen MK, Jensen RA, Mukamal KJ, Guo X, Yao J, Sun Q, et al. . Detection of genetic loci associated with plasma fetuin-A: a meta-analysis of genome-wide association studies from the CHARGE Consortium. Hum Mol Genet. (2017) 26:2156–63. 10.1093/hmg/ddx091
    1. Ketteler M, Bongartz P, Westenfeld R, Wildberger JE, Mahnken AH, Bohm R, et al. . Association of low fetuin-A (AHSG) concentrations in serum with cardiovascular mortality in patients on dialysis: a cross-sectional study. Lancet (2003) 361:827–33. 10.1016/S0140-6736(03)12710-9
    1. Hamano T, Matsui I, Mikami S, Tomida K, Fujii N, Imai E, et al. . Fetuin-mineral complex reflects extraosseous calcification stress in CKD. J Am Soc Nephrol. (2010) 21:1998–2007. 10.1681/ASN.2009090944
    1. Pasch A. Novel assessments of systemic calcification propensity. Curr Opin Nephrol Hypertens. (2016) 25:278–84. 10.1097/MNH.0000000000000237
    1. Dahle DO, Asberg A, Hartmann A, Holdaas H, Bachtler M, Jenssen TG, et al. . Serum calcification propensity is a strong and independent determinant of cardiac and all-cause mortality in kidney transplant recipients. Am J Transplant. (2016) 16:204–12. 10.1111/ajt.13443
    1. Keyzer CA, de Borst MH, van den Berg E, Jahnen-Dechent W, Arampatzis S, Farese S, et al. . Calcification propensity and survival among renal transplant recipients. J Am Soc Nephrol. (2016) 27:239–48. 10.1681/ASN.2014070670
    1. Pasch A, Block GA, Bachtler M, Smith ER, Jahnen-Dechent W, Arampatzis S, et al. . Blood calcification propensity, cardiovascular events, and survival in patients receiving hemodialysis in the evolve trial. Clin J Am Soc Nephrol. (2017) 12:315–22. 10.2215/CJN.04720416
    1. Pasch A, Farese S, Graber S, Wald J, Richtering W, Floege J, et al. . Nanoparticle-based test measures overall propensity for calcification in serum. J Am Soc Nephrol. (2012) 23:1744–52. 10.1681/ASN.2012030240
    1. Smith ER, Ford ML, Tomlinson LA, Bodenham E, McMahon LP, Farese S, et al. . Serum calcification propensity predicts all-cause mortality in predialysis CKD. J Am Soc Nephrol. (2014) 25:339–48. 10.1681/ASN.2013060635
    1. Mencke R, Hillebrands JL, consortium N. The role of the anti-ageing protein Klotho in vascular physiology and pathophysiology. Ageing Res Rev. (2017) 35:124–46. 10.1016/j.arr.2016.09.001
    1. Satoh M, Nagasu H, Morita Y, Yamaguchi TP, Kanwar YS, Kashihara N. Klotho protects against mouse renal fibrosis by inhibiting Wnt signaling. Am J Physiol Renal Physiol. (2012) 303:F1641–51. 10.1152/ajprenal.00460.2012
    1. Kusaba T, Okigaki M, Matui A, Murakami M, Ishikawa K, Kimura T, et al. . Klotho is associated with VEGF receptor-2 and the transient receptor potential canonical-1 Ca2+ channel to maintain endothelial integrity. Proc Natl Acad Sci USA. (2010) 107:19308–13. 10.1073/pnas.1008544107
    1. Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, et al. . Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature (1997) 390:45–51. 10.1038/36285
    1. Aizawa H, Saito Y, Nakamura T, Inoue M, Imanari T, Ohyama Y, et al. . Downregulation of the Klotho gene in the kidney under sustained circulatory stress in rats. Biochem Biophys Res Commun. (1998) 249:865–71. 10.1006/bbrc.1998.9246
    1. Hu MC, Shi M, Zhang J, Quinones H, Griffith C, Kuro-o M, et al. . Klotho deficiency causes vascular calcification in chronic kidney disease. J Am Soc Nephrol. (2011) 22:124–36. 10.1681/ASN.2009121311
    1. Koh N, Fujimori T, Nishiguchi S, Tamori A, Shiomi S, Nakatani T, et al. . Severely reduced production of klotho in human chronic renal failure kidney. Biochem Biophys Res Commun. (2001) 280:1015–20. 10.1006/bbrc.2000.4226
    1. Lindberg K, Amin R, Moe OW, Hu MC, Erben RG, Ostman Wernerson A, et al. . The kidney is the principal organ mediating klotho effects. J Am Soc Nephrol. (2014) 25:2169–75. 10.1681/ASN.2013111209
    1. Hum JM, O'Bryan LM, Tatiparthi AK, Cass TA, Clinkenbeard EL, Cramer MS, et al. . Chronic hyperphosphatemia and vascular calcification are reduced by stable delivery of soluble klotho. J Am Soc Nephrol. (2017) 28:1162–74. 10.1681/ASN.2015111266
    1. Yamada S, Giachelli CM. Vascular calcification in CKD-MBD: roles for phosphate, FGF23, and klotho. Bone (2017) 100:87–93. 10.1016/j.bone.2016.11.012
    1. Ichikawa S, Imel EA, Kreiter ML, Yu X, Mackenzie DS, Sorenson AH, et al. . A homozygous missense mutation in human KLOTHO causes severe tumoral calcinosis. J Clin Invest. (2007) 117:2684–91. 10.1172/JCI31330
    1. Brownstein CA, Adler F, Nelson-Williams C, Iijima J, Li P, Imura A, et al. . A translocation causing increased alpha-klotho level results in hypophosphatemic rickets and hyperparathyroidism. Proc Natl Acad Sci USA. (2008) 105:3455–60. 10.1073/pnas.0712361105
    1. Kim HR, Nam BY, Kim DW, Kang MW, Han JH, Lee MJ, et al. . Circulating alpha-klotho levels in CKD and relationship to progression. Am J Kidney Dis. (2013) 61:899–909. 10.1053/j.ajkd.2013.01.024
    1. Pavik I, Jaeger P, Ebner L, Wagner CA, Petzold K, Spichtig D, et al. . Secreted Klotho and FGF23 in chronic kidney disease Stage 1 to 5: a sequence suggested from a cross-sectional study. Nephrol Dial Transplant. (2013) 28:352–9. 10.1093/ndt/gfs460
    1. Seiler S, Rogacev KS, Roth HJ, Shafein P, Emrich I, Neuhaus S, et al. . Associations of FGF-23 and sKlotho with cardiovascular outcomes among patients with CKD stages 2-4. Clin J Am Soc Nephrol. (2014) 9:1049–58. 10.2215/CJN.07870713
    1. Kitagawa M, Sugiyama H, Morinaga H, Inoue T, Takiue K, Ogawa A, et al. . A decreased level of serum soluble Klotho is an independent biomarker associated with arterial stiffness in patients with chronic kidney disease. PLoS ONE (2013) 8:e56695. 10.1371/journal.pone.0056695
    1. Staines KA, MacRae VE, Farquharson C. The importance of the SIBLING family of proteins on skeletal mineralisation and bone remodelling. J Endocrinol. (2012) 214:241–55. 10.1530/JOE-12-0143
    1. Scatena M, Liaw L, Giachelli CM. Osteopontin: a multifunctional molecule regulating chronic inflammation and vascular disease. Arterioscler Thromb Vasc Biol. (2007) 27:2302–9. 10.1161/ATVBAHA.107.144824
    1. Giachelli CM, Bae N, Almeida M, Denhardt DT, Alpers CE, Schwartz SM. Osteopontin is elevated during neointima formation in rat arteries and is a novel component of human atherosclerotic plaques. J Clin Invest. (1993) 92:1686–96. 10.1172/JCI116755
    1. Shanahan CM, Cary NR, Metcalfe JC, Weissberg PL. High expression of genes for calcification-regulating proteins in human atherosclerotic plaques. J Clin Invest. (1994) 93:2393–402. 10.1172/JCI117246
    1. Shanahan CM, Weissberg PL, Metcalfe JC. Isolation of gene markers of differentiated and proliferating vascular smooth muscle cells. Circ Res. (1993) 73:193–204. 10.1161/01.RES.73.1.193
    1. Steitz SA, Speer MY, McKee MD, Liaw L, Almeida M, Yang H, et al. . Osteopontin inhibits mineral deposition and promotes regression of ectopic calcification. Am J Pathol. (2002) 161:2035–46. 10.1016/S0002-9440(10)64482-3
    1. Speer MY, McKee MD, Guldberg RE, Liaw L, Yang HY, Tung E, et al. . Inactivation of the osteopontin gene enhances vascular calcification of matrix Gla protein-deficient mice: evidence for osteopontin as an inducible inhibitor of vascular calcification in vivo. J Exp Med. (2002) 196:1047–55. 10.1084/jem.20020911
    1. Paloian NJ, Leaf EM, Giachelli CM. Osteopontin protects against high phosphate-induced nephrocalcinosis and vascular calcification. Kidney Int. (2016) 89:1027–36. 10.1016/j.kint.2015.12.046
    1. Bucay N, Sarosi I, Dunstan CR, Morony S, Tarpley J, Capparelli C, et al. . Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev. (1998) 12:1260–8. 10.1101/gad.12.9.1260
    1. Collin-Osdoby P. Regulation of vascular calcification by osteoclast regulatory factors RANKL and osteoprotegerin. Circ Res. (2004) 95:1046–57. 10.1161/01.RES.0000149165.99974.12
    1. Min H, Morony S, Sarosi I, Dunstan CR, Capparelli C, Scully S, et al. . Osteoprotegerin reverses osteoporosis by inhibiting endosteal osteoclasts and prevents vascular calcification by blocking a process resembling osteoclastogenesis. J Exp Med. (2000) 192:463–74. 10.1084/jem.192.4.463
    1. Callegari A, Coons ML, Ricks JL, Rosenfeld ME, Scatena M. Increased calcification in osteoprotegerin-deficient smooth muscle cells: dependence on receptor activator of NF-kappaB ligand and interleukin 6. J Vasc Res. (2014) 51:118–31. 10.1159/000358920
    1. Di Bartolo BA, Kavurma MM. Regulation and function of Rankl in arterial calcification. Curr Pharm Des. (2014) 20:5853–61. 10.2174/1381612820666140212205455
    1. Ndip A, Wilkinson FL, Jude EB, Boulton AJ, Alexander MY. RANKL-OPG and RAGE modulation in vascular calcification and diabetes: novel targets for therapy. Diabetologia (2014) 57:2251–60. 10.1007/s00125-014-3348-z
    1. Ndip A, Williams A, Jude EB, Serracino-Inglott F, Richardson S, Smyth JV, et al. . The RANKL/RANK/OPG signaling pathway mediates medial arterial calcification in diabetic Charcot neuroarthropathy. Diabetes (2011) 60:2187–96. 10.2337/db10-1220
    1. Siasos G, Oikonomou E, Maniatis K, Georgiopoulos G, Kokkou E, Tsigkou V, et al. . Prognostic significance of arterial stiffness and osteoprotegerin in patients with stable coronary artery disease. Eur J Clin Invest. (2018) 48:e12890. 10.1111/eci.12890
    1. Venuraju SM, Yerramasu A, Corder R, Lahiri A. Osteoprotegerin as a predictor of coronary artery disease and cardiovascular mortality and morbidity. J Am Coll Cardiol. (2010) 55:2049–61. 10.1016/j.jacc.2010.03.013
    1. King AJ, Siegel M, He Y, Nie B, Wang J, Koo-McCoy S, et al. . Inhibition of sodium/hydrogen exchanger 3 in the gastrointestinal tract by tenapanor reduces paracellular phosphate permeability. Sci Transl Med. (2018) 10:eaam6474. 10.1126/scitranslmed.aam6474
    1. Vo TM, Disthabanchong S. Are there ways to attenuate arterial calcification and improve cardiovascular outcomes in chronic kidney disease? World J Cardiol. (2014) 6:216–26. 10.4330/wjc.v6.i5.216
    1. Pomozi V, Brampton C, van de Wetering K, Zoll J, Calio B, Pham K, et al. . Pyrophosphate supplementation prevents chronic and acute calcification in ABCC6-deficient mice. Am J Pathol. (2017) 187:1258–72. 10.1016/j.ajpath.2017.02.009
    1. Villa-Bellosta R, Rivera-Torres J, Osorio FG, Acin-Perez R, Enriquez JA, Lopez-Otin C, et al. . Defective extracellular pyrophosphate metabolism promotes vascular calcification in a mouse model of Hutchinson-Gilford progeria syndrome that is ameliorated on pyrophosphate treatment. Circulation (2013) 127:2442–51. 10.1161/CIRCULATIONAHA.112.000571
    1. Rutsch F, Boyer P, Nitschke Y, Ruf N, Lorenz-Depierieux B, Wittkampf T, et al. . Hypophosphatemia, hyperphosphaturia, and bisphosphonate treatment are associated with survival beyond infancy in generalized arterial calcification of infancy. Circ Cardiovasc Genet. (2008) 1:133–40. 10.1161/CIRCGENETICS.108.797704
    1. Yapicioglu-Yildizdas H, Ozbarlas N, Erdem S, Yilmaz MB, Ozlu F, Buyukkurt S, et al. . Two newborn babies with generalized arterial calcification of infancy, two new mutations. Turk J Pediatr. (2016) 58:419–23. 10.24953/turkjped.2016.04.013
    1. Kranenburg G, de Jong PA, Bartstra JW, Lagerweij SJ, Lam MG, Ossewaarde-van Norel J, et al. . Etidronate for prevention of ectopic mineralization in patients with pseudoxanthoma elasticum. J Am Coll Cardiol. (2018) 71:1117–26. 10.1016/j.jacc.2017.12.062
    1. Lomashvili KA, Monier-Faugere MC, Wang X, Malluche HH, O'Neill WC. Effect of bisphosphonates on vascular calcification and bone metabolism in experimental renal failure. Kidney Int. (2009) 75:617–25. 10.1038/ki.2008.646
    1. Albright RA, Stabach P, Cao W, Kavanagh D, Mullen I, Braddock AA, et al. . ENPP1-Fc prevents mortality and vascular calcifications in rodent model of generalized arterial calcification of infancy. Nat Commun. (2015) 6:10006. 10.1038/ncomms10006
    1. Varadi A, Fulop K, Aranyi T, Szeri F. Tissue-nonspecific alkaline phosphatase: a promising target for pseudoxanthoma elasticum therapy. Ann Transl Med. (2017) 5:489. 10.21037/atm.2017.10.01
    1. Ziegler SG, Ferreira CR, MacFarlane EG, Riddle RC, Tomlinson RE, Chew EY, et al. . Ectopic calcification in pseudoxanthoma elasticum responds to inhibition of tissue-nonspecific alkaline phosphatase. Sci Transl Med. (2017) 9:eaal1669. 10.1126/scitranslmed.aal1669
    1. Pinkerton AB, Sergienko E, Bravo Y, Dahl R, Ma CT, Sun Q, et al. . Discovery of 5-((5-chloro-2-methoxyphenyl)sulfonamido)nicotinamide (SBI-425), a potent and orally bioavailable tissue-nonspecific alkaline phosphatase (TNAP) inhibitor. Bioorg Med Chem Lett. (2018) 28:31–4. 10.1016/j.bmcl.2017.11.024
    1. Li Q, Huang J, Pinkerton AB, Millan JL, van Zelst BD, Levine MA, et al. Inhibition of tissue-nonspecific alkaline phosphatase attenuates ectopic mineralization in the Abcc6(-/-) mouse model of PXE but not in the Enpp1 mutant mouse models of GACI. J Invest Dermatol. (2018). 10.1016/j.jid.2018.07.030. [Epub ahead of print].

Source: PubMed

3
Prenumerera