Distinct progression patterns of brain disease in infantile and juvenile gangliosidoses: Volumetric quantitative MRI study

Igor Nestrasil, Alia Ahmed, Josephine M Utz, Kyle Rudser, Chester B Whitley, Jeanine R Jarnes-Utz, Igor Nestrasil, Alia Ahmed, Josephine M Utz, Kyle Rudser, Chester B Whitley, Jeanine R Jarnes-Utz

Abstract

Background: GM1-gangliosidosis and GM2-gangliosidosis (Tay-Sachs disease and Sandhoff disease) are unrelenting heritable neurodegenerative conditions of lysosomal ganglioside accumulation. Although progressive brain atrophy is characteristic, longitudinal quantification of specific brain structures has not been systematically studied.

Objectives: The goal of this longitudinal study has been to quantify and track brain MRI volume changes, including specific structure volume changes, at different times in disease progression of childhood gangliosidoses, and to explore quantitative brain MRI volumetry (qMRI) as a non-invasive marker of disease progression for future treatment trials.

Methods: Brain qMRI studies were performed in 14 patients with gangliosidoses (9 infantile, 5 juvenile) yearly. Cerebellar cortex and white matter, caudate, putamen, corpus callosum, ventricles, total brain, and intracranial volumes were measured, as well as total brain volume. Age-matched controls were available for the patients with the juvenile phenotype.

Results: The infantile phenotype of all gangliosidoses showed a consistent pattern of macrocephaly and rapidly increasing intracranial MRI volume with both (a) brain tissue volume (cerebral cortex and other smaller structures) and (b) ventricular volume (P<0.01 for all). In contrast to apparent enlargement of the total brain volume, and chiefly the enlarged cerebral cortex, a subset of smaller brain substructures generally decreased in size: the corpus callosum, caudate and putamen became smaller with time. The volume of cerebellar cortex also decreased in patients with infantile GM1-gangliosidosis and juvenile GM1- and GM2-gangliosidosis; however, infantile GM2-gangliosidosis cerebellar cortex was the exception, increasing in size. Elevated intracranial pressure (estimated by lumbar spinal pressure) was a common finding in infantile disease and showed continued increases as the disease progressed, yet lacked MRI signs of hydrocephalus except for increasing ventricular size. Notably, in patients with juvenile gangliosidosis, macrocephaly and elevated intracranial pressure were absent and total brain volume decreased with time compared to controls (P=0.004).

Conclusions: The disease course of infantile versus juvenile gangliosidoses is clearly distinguished by the rate of brain disease progression as characterized by qMRI. Assessments by qMRI represent a robust non-invasive method for monitoring CNS changes in the clinical course of gangliosidoses and is ideally suited to monitor effects of novel CNS-directed therapies in future clinical trials.

Keywords: GM1-gangliosidosis; GM2-gangliosidosis; Gangliosidosis; Sandhoff disease; Tay-Sachs disease; β-galactosidase.

Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

Figures

Fig. 1
Fig. 1
Change in the intracranial volume (ICV) with age.
Fig. 2
Fig. 2
Change in the total brain volume, without ventricular volume, with age.
Fig. 3
Fig. 3
Change in the compound ventricular volume with age.
Fig. 4
Fig. 4
Change in the cerebellar white matter volume with age.
Fig. 5
Fig. 5
Change in the caudate nuclei volume with age.
Fig. 6
Fig. 6
Change in the putaminal volume with age.
Fig. 7
Fig. 7
Change in the corpus callosum volume with age.
Fig. 8
Fig. 8
Change in the basal ganglia volume with age.
Fig. 9
Fig. 9
Change in the cerebellar cortex volume with age.
Fig. 10
Fig. 10
Change in the CSF opening pressure with age.

References

    1. Sarafoglou K, Hoffmann GF, Roth KS. Pediatric Endocrinology and Inborn Errors of Metabolism. McGraw-Hill Company; New York: 2009. pp. 721-725. pp. 738-740. pp. 744-745.
    1. Barranger JA, Cabrera-Salazar MA. Lysosomal Storage Disorders. Springer Science +Business Media, LLC; New York: 2007.
    1. Bley AE, Giannikopoulos OA, Hayden D, Kubilus K, Tifft CJ, Eichler FS. Natural history of infantile G(M2) gangliosidosis. Pediatrics. 2011;128(5):e1233–1241.
    1. Smith NJ, Winstone AM, Stellitano L, Cox TM, Verity CM. GM2 gangliosidosis in a UK study of children with progressive neurodegeneration: 73 cases reviewed. Dev. Med. Child Neurol. 2012;54(2):176–182.
    1. Jarnes Utz JR, Kim S, King K, Ziegler R, Schema L, Redtree ES, Whitley CB. Infantile gangliosidoses: mapping a timeline of clinical changes. Mol. Genet. Metab. 2017;121(2):170–179.
    1. Regier DS, Proia RL, D'Azzo A, Tifft CJ. The GM1 and GM2 gangliosidoses: natural history and progress toward therapy. Pediatr. Endocrinol. Rev. 2016;13(Suppl. 1):663–673.
    1. Steenweg ME, Vanderver A, Blaser S, Bizzi A, de Koning TJ, Mancini GM, van Wieringen WN, Barkhof F, Wolf NI, van der Knaap MS. Magnetic resonance imaging pattern recognition in hypomyelinating disorders. Brain. 2010;133(10):2971–2982.
    1. Patterson MC. Gangliosidoses. Handb. Clin. Neurol. 2013;113:1707–1708.
    1. Maegawa GH, Stockley T, Tropak M, Banwell B, Blaser S, Kok F, Giugliani R, Mahuran D, Clarke JT. The natural history of juvenile or subacute GM2 gangliosidosis: 21 new cases and literature review of 134 previously reported. Pediatrics. 2006;118(5):e1550–1562.
    1. Kannebley JS, Silveira-Moriyama L, Bastos LO, Steiner CE. Clinical findings and natural history in ten unrelated families with juvenile and adult GM1Gangliosidosis. JIMD Rep. 2015;24:115–122.
    1. Al-Essa MA, Bakheet SM, Patay ZJ, Nounou RM, Ozand PT. Cerebral fluorine-18 labeled 2-fluoro-2-deoxyglucose positron emission tomography (FDG PET), MRI, and clinical observations in a patient with infantile G(M1) gangliosidosis. Brain Dev. 1999;21(8):559–562.
    1. Tanaka R, Momoi T, Yoshida A, Okumura M, Yamakura S, Takasaki Y, Kiyomasu T, Yamanaka C. Type 3 GM1 gangliosidosis: clinical and neuroradiological findings in an 11-year-old girl. J. Neurol. 1995;242(5):299–303.
    1. Koelfen W, Freund M, Jaschke W, Koenig S, Schultze C. GM2 gangliosidosis (Sandhoff's disease): two year follow-up by MRI. Neuroradiology. 1994;36(2):152–154.
    1. De Grandis E, Di Rocco M, Pessagno A, Veneselli E, Rossi A. MR imaging findings in 2 cases of late infantile GM1 gangliosidosis. AJNR Am. J. Neuroradiol. 2009;30(7):1325–1327.
    1. Wilken B, Dechent P, Hanefeld F, Frahm J. Proton MRS of a child with Sandhoff disease reveals elevated brain hexosamine. Eur. J. Paediatr. Neurol. 2008;12(1):56–60.
    1. Erol I, Alehan F, Pourbagher MA, Canan O, Vefa Yildirim S. Neuroimaging findings in infantile GM1 gangliosidosis. Eur. J. Paediatr. Neurol. 2006;10(5–6):245–248.
    1. Bano S, Prasad A, Yadav SN, Chaudhary V, Garga UC. Neuroradiological findings in GM2 gangliosidosis variant B1. J. Pediatr. Neurosci. 2011;6(2):110–113.
    1. Lee SM, Lee MJ, Lee JS, Kim HD, Lee JS, Kim J, Lee SK, Lee YM. Newly observed thalamic involvement and mutations of the HEXA gene in a Korean patient with juvenile GM2 gangliosidosis. Metab. Brain Dis. 2008;23(3):235–242.
    1. Grosso S, Farnetani MA, Berardi R, Margollicci M, Galluzzi P, Vivarelli R, Morgese G, Ballestri P. GM2 gangliosidosis variant B1 neuroradiological findings. J. Neurol. 2003;250(1):17–21.
    1. Sharma S, Sankhyan N, Kabra M, Gulati S. Teaching neuroimages: T2 hypointense thalami in infantile GM1 gangliosidosis. Neurology. 2010;74:e47.
    1. Leroy F, Mangin JF, Rousseau F, Glasel H, Hertz-Pannier L, Dubois J, Dehaene-Lambertz G. Atlas-free surface reconstruction of the cortical grey-white interface in infants. PLoS One. 2011;6(11):e27128.
    1. Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, van der Kouwe A, Killiany R, Kennedy D, Klaveness S, Montillo A, Makris N, Rosen B, Dale AM. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron. 2002;33(3):341–355.
    1. Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM. FSL. NeuroImage. 2012;62(2):782–790.
    1. Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, Gerig G. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. NeuroImage. 2006;31(3):1116–1128.
    1. Magnotta VA, Harris G, Andreasen NC, O'Leary DS, Yuh WTC, Heckel D. Structural MR image processing using the BRAINS2 toolbox. Comput. Med. Imaging Graph. 2002;26(4):251–264.
    1. Rangwala LM, Liu GT. Pediatric idiopathic intracranial hypertension. Surv. Ophthalmol. 2007;52(6):597–617.
    1. Nechby C. Blood chemistries and body fluids. In: Gunn VL, Nechby C, editors. The Harriet Lane Handbook: A Manual for Pediatric House Officers. 16. Mosby; Philadelphia: 2002. pp. 549–559.
    1. World Health Organization. [Accessed date: 6 September 2013];Child Growth Standards, Head Circumference-for-Age (English language)
    1. Roche AF, Mukherjee D, Guo SM, Moore WM. Head circumference reference data: birth to 18 years. Pediatrics. 1987;79:706–712.
    1. R. Core Team, R. A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2016.
    1. Liu Y, Hoffmann A, Grinberg A, Westphal H, McDonald MP, Miller KM, Crawley JN, Sandhoff K, Suzuki K, Proia RL. Mouse model GM2 activator deficiency manifests cerebellar pathology and motor impairment. Proc. Natl. Acad. Sci. U. S. A. 1997;94(15):8138–8143.
    1. Taniguchi M, Shinoda Y, Ninomiya H, Vanier MT, Ohno K. Sites and temporal changes of gangliosides GM1/GM2 storage in the Niemann-Pick disease type C mouse brain. Brain Dev. 2001;23(6):414–421.
    1. Kasama T, Taketomi T. Abnormalities of cerebral lipids in GM1-gangliosidoses, infantile, juvenile, and chronic type. Jpn. J. Exp. Med. 1986;56(1):1–11.
    1. Mittal P, Gupta R, Garg P, Mittal A, Kaur H, Gupta SCT. MRI findings in a case of infantile form of GM2 gangliosidosis: Tay-Sachs disease. Neurol. India. 2016;64(6):1372–1373.
    1. Sheth J, Datar C, Mistri M, Bhavsar R, Sheth F, Shah K. GM2 gangliosidosis AB variant: novel mutation from India - a case report with a review. BMC Pediatr. 2016;16:88.
    1. Beker-Acay M, Elmas M, Koken R, Unlu E, Bukulmez A. Infantile type Sandhoff disease with striking brain MRI findings and a novel mutation. Pol. J. Radiol. 2016;81:86–89.
    1. Hikosaka O, Takikawa Y, Kawagoe R. Role of the basal ganglia in the control of purposive saccadic eye movements. Physiol. Rev. 2000;80(3):953–978.
    1. Ali A, Akram F, Khan G, Hussain S. Paediatrics brain imaging in epilepsy: common presenting symptoms and spectrum of abnormalities detected on MRI. J. Ayub Med. Coll. Abbottabad. 2017;29(2):215–218.
    1. Hannan K, Wood S, Yung A, Velakoulis D, Phillips L, Soulsby B, Berger G, McGorry P, Pantelis C. Caudate nucleus volume in individuals at ultra-high risk of psychosis: a cross-sectional magnetic resonance imaging study. Psychiatry Res. 2010;182(3):223–230.
    1. Hasegawa D, Tamura S, Nakamoto Y, Matsuki N, Takahashi K, Fujita M, Uchida K, Yamato O. Magnetic resonance findings of the corpus callosum in canine and feline lysosomal storage diseases. PLoS One. 2013;8(12):e83455.
    1. Yüksel A, Yalçinkaya C, Işlak C, Gündüz E, Seven M. Neuroimaging findings of four patients with Sandhoff disease. Pediatr. Neurol. 1999;21(2):562–565.
    1. Folkerth RD, Alroy J, Bhan I, Kaye EM. Infantile GM1 gangliosidosis: complete morphology and histochemistry of two autopsy cases, with particular reference to delayed central nervous system myelination. Pediatr. Dev. Pathol. 2000;3:73–86.
    1. Avery RA. Reference range of cerebrospinal fluid opening pressure in children: historical overview and current data. Neuropediatrics. 2014;45(4):206–211.

Source: PubMed

3
Prenumerera