Venous oxygen saturation as a physiologic transfusion trigger

Benoit Vallet, Emmanuel Robin, Gilles Lebuffe, Benoit Vallet, Emmanuel Robin, Gilles Lebuffe

Abstract

This article is one of ten reviews selected from the Yearbook of Intensive Care and Emergency Medicine 2010 (Springer Verlag) and co-published as a series in Critical Care. Other articles in the series can be found online at http://ccforum.com/series/yearbook. Further information about the Yearbook of Intensive Care and Emergency Medicine is available from http://www.springer.com/series/2855.

Figures

Figure 1
Figure 1
ROC curve analysis illustrating the usefulness of ScvO2 measurement before blood transfusion in order to predict a minimal 5% increase in ScvO2 after BT. The threshold value for ScvO2 with the best sensitivity and best specificity was 69.5% (*sensitivity: 82%, specificity: 76%; area under the curve: 0.831 ± 0.059). Adapted from [7] with permission.
Figure 2
Figure 2
Individual evolutions in ScvO2 before and after blood transfusion (BT) according to agreement (Reco+) or not (Reco-) with the SRLF recommendations for transfusion and according to the ScvO2 before transfusion (< or ≥ 70%). Adapted from [7] with permission.

References

    1. Dueck MH, Klimek M, Appenrodt S, Weigand C, Boerner U. Trends but not individual values of central venous oxygen saturation agree with mixed venous oxygen saturation during varying hemodynamic conditions. Anesthesiology. 2005;103:249–257. doi: 10.1097/00000542-200508000-00007.
    1. Reinhart K, Kuhn HJ, Hartog C, Bredle DL. Continuous central venous and pulmonary artery oxygen saturation monitoring in the critically ill. Intensive Care Med. 2004;30:1572–1578. doi: 10.1007/s00134-004-2337-y.
    1. Räsänen J. Mixed venous oximetry may detect critical oxygen delivery. Anesth Analg. 1990;71:567–568. doi: 10.1213/00000539-199011000-00028.
    1. Vallet B, Singer M. In: Patient-Centred Acute Care Training. First. Ramsay G, editor. European Society of Intensive Care Medicine, Brussels; 2006. Hypotension.
    1. Ronco JJ, Fenwick JC, Tweeddale MG. Identification of the critical oxygen delivery for anaerobic metabolism in critically ill septic and nonseptic humans. JAMA. 1993;270:1724–1730. doi: 10.1001/jama.270.14.1724.
    1. Rivers E, Nguyen B, Havstad S. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345:1368–1377. doi: 10.1056/NEJMoa010307.
    1. Adamczyk S, Robin E, Barreau O. [Contribution of central venous oxygen saturation in postoperative blood transfusion decision] Ann Fr Anesth Reanim. 2009;28:522–530.
    1. Conférence de consensus (2003) Société de réanimation de langue française - XXIIIe Conférence de consensus en réanimation et en médecine d'urgence - jeudi 23 octobre 2003. Transfusion érythrocytaire en réanimation (nouveau-né exclu) Réanimation. 2003;12:531–537. doi: 10.1016/j.reaurg.2003.11.001.
    1. van Woerkens EC, Trouwborst A, van Lanschot JJ. Profound hemodilution: what is the critical level of hemodilution at which oxygen delivery-dependent oxygen consumption starts in an anesthetized human? Anesth Analg. 1992;75:818–821. doi: 10.1213/00000539-199211000-00029.
    1. Lieberman JA, Weiskopf RB, Kelley SD. Critical oxygen delivery in conscious humans is less than 7.3 -1.min-1. Anesthesiology. 2000;92:407–413. doi: 10.1097/00000542-200002000-00022.
    1. Leung JM, Weiskopf RB, Feiner J. Electrocardiographic ST-segment changes during acute, severe isovolemic hemodilution in humans. Anesthesiology. 2000;93:1004–1010. doi: 10.1097/00000542-200010000-00023.
    1. Spahn DR, Zollinger A, Schlumpf RB. Hemodilution tolerance in elderly patients without known cardiac disease. Anesth Analg. 1996;82:681–686. doi: 10.1097/00000539-199604000-00002.
    1. Spahn DR, Schmid ER, Seifert B, Pasch T. Hemodilution tolerance in patients with coronary artery disease who are receiving chronic beta-adrenergic blocker therapy. Anesth Analg. 1996;82:687–694. doi: 10.1097/00000539-199604000-00003.
    1. Weiskopf RB, Feiner J, Hopf HW. Oxygen reverses deficits of cognitive function and memory and increased heart rate induced by acute severe isovolemic anemia. Anesthesiology. 2002;96:871–877. doi: 10.1097/00000542-200204000-00014.
    1. Weiskopf RB, Toy P, Hopf HW. Acute isovolemic anemia impairs central processing as determined by P300 latency. Clin Neurophysiol. 2005;116:1028–1032. doi: 10.1016/j.clinph.2004.12.009.
    1. Spahn DR, Madjdpour C. Physiologic transfusion triggers: do we have to use (our) brain? Anesthesiology. 2006;104:905–906. doi: 10.1097/00000542-200605000-00002.
    1. Weiskopf RB, Feiner J, Hopf H. Fresh blood and aged stored blood are equally efficacious in immediately reversing anemia-induced brain oxygenation deficits in humans. Anesthesiology. 2006;104:911–920. doi: 10.1097/00000542-200605000-00005.
    1. Madjdpour C, Spahn DR, Weiskopf RB. Anemia and perioperative red blood cell transfusion: a matter of tolerance. Crit Care Med. 2006;34:S102–108. doi: 10.1097/01.CCM.0000214317.26717.73.
    1. Vallet B, Adamczyk S, Barreau O, Lebuffe G. Physiologic transfusion triggers. Best Pract Res Clin Anaesthesiol. 2007;21:173–181. doi: 10.1016/j.bpa.2007.02.003.
    1. Orlov D, O'Farrell R, McCluskey SA. The clinical utility of an index of global oxygenation for guiding red blood cell transfusion in cardiac surgery. Transfusion. 2009;49:682–688. doi: 10.1111/j.1537-2995.2008.02022.x.

Source: PubMed

3
Prenumerera