Elevated Systemic IL-6 Levels in Patients with Aneurysmal Subarachnoid Hemorrhage Is an Unspecific Marker for Post-SAH Complications

Shafqat Rasul Chaudhry, Birgit Stoffel-Wagner, Thomas Mehari Kinfe, Erdem Güresir, Hartmut Vatter, Dirk Dietrich, Alf Lamprecht, Sajjad Muhammad, Shafqat Rasul Chaudhry, Birgit Stoffel-Wagner, Thomas Mehari Kinfe, Erdem Güresir, Hartmut Vatter, Dirk Dietrich, Alf Lamprecht, Sajjad Muhammad

Abstract

Background: Aneurysmal subarachnoid hemorrhage (aSAH) is still a fatal and morbid disease, although bleeding aneurysms can be secured in almost all cases. Occurrence of post-SAH complications including cerebral vasospasm, delayed cerebral ischemia, hydrocephalus, epilepsy, and infections are the main determinants of clinical outcome. Hence, it is important to search for early predictors for specific post-SAH complications to treat these complications properly. Both cellular and molecular (cytokines) inflammation play a key role after aSAH during the phase of occurrence of post-SAH complications. Interleukin-6 (IL-6) is a well-known cytokine that has been extensively analyzed in cerebrospinal fluid (CSF) of patients after aSAH, but detailed studies exploring the role of systemic IL-6 in aSAH associated complications and its impact on early clinical outcome prediction are lacking. The current study aims to analyze the systemic IL-6 levels over two weeks after bleeding and its role in post-SAH complications. Methods: We recruited 80 aSAH patients prospectively who underwent peripheral venous blood withdrawal in serum gel tubes. The blood was centrifuged to harvest the serum, which was immediately frozen at -80 °C until analysis. Serum IL-6 levels were quantified using Immulite immunoassay system. Patient records including age, gender, post-SAH complications, aneurysm treatment, and clinical outcome (modified Rankin scale and Glasgow outcome scale) were retrieved to allow different subgroup analysis. Results: Serum IL-6 levels were significantly raised after aSAH compared to healthy controls over the first two weeks after hemorrhage. Serum IL-6 levels were found to be significantly elevated in aSAH patients presenting with higher Hunt and Hess grades, increasing age, and both intraventricular and intracerebral hemorrhage. Interestingly, serum IL-6 was also significantly raised in aSAH patients who developed seizures, cerebral vasospasm (CVS), and chronic hydrocephalus. IL-6 levels were sensitive to the development of infections and showed an increase in patients who developed pneumoniae. Intriguingly, we found a delayed increase in serum IL-6 in patients developing cerebral infarction. Finally, IL-6 levels were significantly higher in patients presenting with poor clinical outcome in comparison to good clinical outcome at discharge from hospital. Conclusion: Serum IL-6 levels were elevated early after aSAH and remained high over the two weeks after initial bleeding. Serum IL-6 was elevated in different aSAH associated complications, acting as a non-specific marker for post-SAH complications and an important biomarker for clinical outcome at discharge.

Keywords: aneurysm; clinical outcome; inflammation; interleukin-6 (IL-6); post-SAH complications; subarachnoid hemorrhage.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Comparison of serum IL-6 levels among healthy controls and aneurysmal subarachnoid hemorrhage (aSAH) patients. HC = Healthy controls, n = 10, aSAH = Aneurysmal subarachnoid hemorrhage, n = 80, D1–D13 = Day 1–Day 13, Unpaired t test, p < 0.001 (***), error bars represent SEM.
Figure 2
Figure 2
Comparison of serum interleukin-6 (IL-6) levels among aSAH patients with different characteristics. (A) Comparison of serum IL-6 levels in aSAH patients undergoing repair of aneurysm by neurosurgical clipping (n = 39) or endovascular coiling (n = 41); (B) Comparison of serum IL-6 levels in male (n = 30) and female (n = 50) aSAH patients; (C) Comparison of serum IL-6 levels among aSAH patients with anterior circulation aneurysms (n = 69) and posterior circulation aneurysms (n = 11); (D) Comparison of serum IL-6 levels among aSAH patients below (n = 37) and above 55 years of age (n = 43); (E) Comparison of serum IL-6 levels among aSAH patients with good Hunt and Hess (H&H) grades (n = 29) and poor H&H grades (n = 51); (F) Comparison of serum IL-6 levels among aSAH patients showing no intraventricular hemorrhage and intracerebral bleeding (IVH + ICB) (n = 43) and IVH (n = 10). Unpaired t test to compare the two groups, p < 0.05 (*), p < 0.01 (**), p < 0.001 (***), error bars represent SEM.
Figure 3
Figure 3
(A) Comparison of serum IL-6 levels among aSAH patients showing no IVH + ICB (n = 43) and ICB (n = 16). (B) Comparison of serum IL-6 levels among aSAH patients showing no IVH + ICB (n = 43) and both IVH + ICB (n = 11). (C) Comparison of serum IL-6 in patients displaying delayed ischemic neurological deficits (DIND) (n = 28) and no DIND (n = 52). (D) Comparison of serum IL-6 in aSAH patients who developed cerebral vasospasm (CVS) (n = 44) and no CVS (n = 36). (E) Comparison of serum IL-6 in aSAH patients who developed seizures (n = 24) and no seizures (n = 56). (F) Comparison of serum IL-6 in aSAH patients who developed chronic hydrocephalus (n = 25) and no chronic hydrocephalus (n = 55). Unpaired t test to compare the two groups, p < 0.05 (*), p < 0.01 (**), p < 0.001 (***), error bars represent SEM.
Figure 4
Figure 4
(A) Comparison of serum IL-6 levels in aSAH patients with infections (n = 30) and without infections (50). (B) Comparison of serum IL-6 levels in aSAH patients presenting with only pneumonia (n = 14) and no infections (n = 50). (C) Comparison of serum IL-6 levels in aSAH patients presenting with only meningitis (n = 7) and no infections (n = 50). (D) Comparison of serum IL-6 levels in aSAH patients presenting with other infections (n = 9) and no infections (n = 50). (E) Comparison of serum IL-6 levels among patients with cerebral ischemia (CI) (n = 33) and no CI (n = 47). (F) Comparison of serum IL-6 levels in patients with delayed cerebral ischemia (DCI) (n = 16) and no CI (n = 47). Unpaired t test to compare the two groups, p < 0.05 (*), p < 0.01 (**), p < 0.001 (***), error bars represent SEM.
Figure 5
Figure 5
(A) Comparison of serum IL-6 levels among patients with good clinical outcome (GOS 4–5 = 39) and poor clinical outcome (GOS 1–3 = 41) as assessed by GOS. (B) Comparison of serum IL-6 levels among aSAH patients with good clinical outcome (mRS 0–2 = 35) and poor clinical outcome (mRS 3–6 = 45) as assessed by modified Rankin scale. Unpaired t test to compare the two groups, p < 0.05 (*), p < 0.001 (***), error bars represent SEM.

References

    1. Lovelock C.E., Rinkel G.J., Rothwell P.M. Time trends in outcome of subarachnoid hemorrhage: Population-based study and systematic review. Neurology. 2010;74:1494–1501. doi: 10.1212/WNL.0b013e3181dd42b3.
    1. Al-Khindi T., Macdonald R.L., Schweizer T.A. Cognitive and functional outcome after aneurysmal subarachnoid hemorrhage. Stroke. 2010;41:e519–e536. doi: 10.1161/STROKEAHA.110.581975.
    1. Dodel R., Winter Y., Ringel F., Spottke A., Gharevi N., Muller I., Klockgether T., Schramm J., Urbach H., Meyer B. Cost of illness in subarachnoid hemorrhage: A German longitudinal study. Stroke. 2010;41:2918–2923.
    1. Cahill J., Zhang J.H. Subarachnoid Hemorrhage: Is It Time for a New Direction? Stroke. 2009;40:S86–S87. doi: 10.1161/STROKEAHA.108.533315.
    1. Frontera J.A., Fernandez A., Schmidt J.M., Claassen J., Wartenberg K.E., Badjatia N., Parra A., Connolly E.S., Mayer S.A. Impact of nosocomial infectious complications after subarachnoid hemorrhage. Neurosurgery. 2008;62:80–87. doi: 10.1227/01.NEU.0000311064.18368.EA.
    1. Gruenbaum S.E., Bilotta F. Postoperative ICU management of patients after subarachnoid hemorrhage. Curr. Opin. Anaesthesiol. 2014;27:489–493. doi: 10.1097/ACO.0000000000000111.
    1. Helbok R., Kurtz P., Vibbert M., Schmidt M.J., Fernandez L., Lantigua H., Ostapkovich N.D., Connolly S.E., Lee K., Claassen J., et al. Early neurological deterioration after subarachnoid haemorrhage: Risk factors and impact on outcome. J. Neurol. Neurosurg. Psychiatry. 2013;84:266–270. doi: 10.1136/jnnp-2012-302804.
    1. Lantigua H., Ortega-Gutierrez S., Schmidt J.M., Lee K., Badjatia N., Agarwal S., Claassen J., Connolly E.S., Mayer S.A. Subarachnoid hemorrhage: Who dies, and why? Crit. Care. 2015;19:309. doi: 10.1186/s13054-015-1036-0.
    1. Roos Y., de Haan R.J., Beenen L., Groen R., Albrecht K., Vermeulen M. Complications and outcome in patients with aneurysmal subarachnoid haemorrhage: A prospective hospital based cohort study in The Netherlands. J. Neurol. Neurosurg. Psychiatry. 2000;68:337–341. doi: 10.1136/jnnp.68.3.337.
    1. Suarez J.I., Tarr R.W., Selman W.R. Aneurysmal Subarachnoid Hemorrhage. N. Engl. J. Med. 2006;354:387–396.
    1. Macdonald R.L. Delayed neurological deterioration after subarachnoid haemorrhage. Nat. Rev. Neurol. 2014;10:44–58. doi: 10.1038/nrneurol.2013.246.
    1. Muhammad S., Guresir A., Greschus S., Scorzin J., Vatter H., Guresir E. Posterior Reversible Encephalopathy Syndrome as an Overlooked Complication of Induced Hypertension for Cerebral Vasospasm: Systematic Review and Illustrative Case. Stroke. 2016;47:519–522. doi: 10.1161/STROKEAHA.115.011697.
    1. Lucke-Wold B.P., Logsdon A.F., Manoranjan B., Turner R.C., McConnell E., Vates G.E., Huber J.D., Rosen C.L., Simard J.M. Aneurysmal Subarachnoid Hemorrhage and Neuroinflammation: A Comprehensive Review. Int. J. Mol. Sci. 2016;17:497. doi: 10.3390/ijms17040497.
    1. Bowman G., Dixit S., Bonneau R.H., Chinchilli V.M., Cockroft K.M. Neutralizing antibody against interleukin-6 attenuates posthemorrhagic vasospasm in the rat femoral artery model. Neurosurgery. 2004;54:719–725. doi: 10.1227/01.NEU.0000108981.73153.6E.
    1. Bethin K.E., Vogt S.K., Muglia L.J. Interleukin-6 is an essential, corticotropin-releasing hormone-independent stimulator of the adrenal axis during immune system activation. Proc. Natl. Acad. Sci. USA. 2000;97:9317–9322. doi: 10.1073/pnas.97.16.9317.
    1. Hodes G.E., Pfau M.L., Leboeuf M., Golden S.A., Christoffel D.J., Bregman D., Rebusi N., Heshmati M., Aleyasin H., Warren B.L., et al. Individual differences in the peripheral immune system promote resilience versus susceptibility to social stress. Proc. Natl. Acad. Sci. USA. 2014;111:16136–16141. doi: 10.1073/pnas.1415191111.
    1. Kraakman M.J., Kammoun H.L., Allen T.L., Deswaerte V., Henstridge D.C., Estevez E., Matthews V.B., Neill B., White D.A., Murphy A.J., et al. Blocking IL-6 trans-signaling prevents high-fat diet-induced adipose tissue macrophage recruitment but does not improve insulin resistance. Cell Metab. 2015;21:403–416. doi: 10.1016/j.cmet.2015.02.006.
    1. Hunter C.A., Jones S.A. IL-6 as a keystone cytokine in health and disease. Nat. Immunol. 2015;16:448–457. doi: 10.1038/ni.3153.
    1. Scheller J., Chalaris A., Schmidt-Arras D., Rose-John S. The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim. Biophys. Acta Mol. Cell Res. 2011;1813:878–888. doi: 10.1016/j.bbamcr.2011.01.034.
    1. Quintana F.J. Old dog, new tricks: IL-6 cluster signaling promotes pathogenic TH17 cell differentiation. Nat. Immunol. 2017;18:8–10. doi: 10.1038/ni.3637.
    1. Suzuki S., Tanaka K., Suzuki N. Ambivalent aspects of interleukin-6 in cerebral ischemia: Inflammatory versus neurotrophic aspects. J. Cereb. Blood Flow Metab. 2009;29:464–479. doi: 10.1038/jcbfm.2008.141.
    1. Helbok R., Schiefecker A.J., Beer R., Dietmann A., Antunes A.P., Sohm F., Fischer M., Hackl W.O., Rhomberg P., Lackner P., et al. Early brain injury after aneurysmal subarachnoid hemorrhage: A multimodal neuromonitoring study. Crit. Care. 2015;19:75. doi: 10.1186/s13054-015-0809-9.
    1. Niwa A., Osuka K. Interleukin-6, MCP-1, IP-10, and MIG are sequentially expressed in cerebrospinal fluid after subarachnoid hemorrhage. J. Neuroinflamm. 2016;13:217. doi: 10.1186/s12974-016-0675-7.
    1. Osuka K., Suzuki Y., Tanazawa T., Hattori K., Yamamoto N., Takayasu M., Shibuya M., Yoshida J. Interleukin-6 and Development of Vasospasm after Subarachnoid Haemorrhage. Acta Neurochir. 1998;140:943–951. doi: 10.1007/s007010050197.
    1. Sarrafzadeh A., Schlenk F., Gericke C., Vajkoczy P. Relevance of cerebral interleukin-6 after aneurysmal subarachnoid hemorrhage. Neurocrit. Care. 2010;13:339–346. doi: 10.1007/s12028-010-9432-4.
    1. Schoch B., Regel J.P., Wichert M., Gasser T., Volbracht L., Stolke D. Analysis of intrathecal interleukin-6 as a potential predictive factor for vasospasm in subarachnoid hemorrhage. Neurosurgery. 2007;60:828–836. doi: 10.1227/01.NEU.0000255440.21495.80.
    1. Wu W., Guan Y., Zhao G., Fu X.-J., Guo T.-Z., Liu Y.-T., Ren X.-L., Wang W., Liu H.-R., Li Y.-Q. Elevated IL-6 and TNF-α Levels in Cerebrospinal Fluid of Subarachnoid Hemorrhage Patients. Mol. Neurobiol. 2016;53:3277–3285. doi: 10.1007/s12035-015-9268-1.
    1. Zeiler F.A., Thelin E.P., Czosnyka M., Hutchinson P.J., Menon D.K., Helmy A. Cerebrospinal Fluid and Microdialysis Cytokines in Aneurysmal Subarachnoid Hemorrhage: A Scoping Systematic Review. Front. Neurol. 2017;8:379. doi: 10.3389/fneur.2017.00379.
    1. Muroi C., Hugelshofer M., Seule M., Tastan I., Fujioka M., Mishima K., Keller E. Correlation among systemic inflammatory parameter, occurrence of delayed neurological deficits, and outcome after aneurysmal subarachnoid hemorrhage. Neurosurgery. 2013;72:367–375. doi: 10.1227/NEU.0b013e31828048ce.
    1. Hollig A., Remmel D., Stoffel-Wagner B., Schubert G.A., Coburn M., Clusmann H. Association of early inflammatory parameters after subarachnoid hemorrhage with functional outcome: A prospective cohort study. Clin. Neurol. Neurosurg. 2015;138:177–183. doi: 10.1016/j.clineuro.2015.08.030.
    1. Hollig A., Thiel M., Stoffel-Wagner B., Coburn M., Clusmann H. Neuroprotective properties of dehydroepiandrosterone-sulfate and its relationship to interleukin 6 after aneurysmal subarachnoid hemorrhage: A prospective cohort study. Crit. Care. 2015;19:231. doi: 10.1186/s13054-015-0954-1.
    1. Kao H.W., Lee K.W., Kuo C.L., Huang C.S., Tseng W.M., Liu C.S., Lin C.P. Interleukin-6 as a Prognostic Biomarker in Ruptured Intracranial Aneurysms. PLoS ONE. 2015;10:e0132115. doi: 10.1371/journal.pone.0132115.
    1. Dhar R., Diringer M.N. The Burden of the Systemic Inflammatory Response Predicts Vasospasm and Outcome after Subarachnoid Hemorrhage. Neurocrit. Care. 2008;8:404–412. doi: 10.1007/s12028-008-9054-2.
    1. Yoshimoto Y., Tanaka Y., Hoya K. Acute Systemic Inflammatory Response Syndrome in Subarachnoid Hemorrhage. Stroke. 2001;32:1989–1993. doi: 10.1161/hs0901.095646.
    1. Bowman G., Bonneau R.H., Chinchilli V.M., Tracey K.J., Cockroft K.M. A novel inhibitor of inflammatory cytokine production (CNI-1493) reduces rodent post-hemorrhagic vasospasm. Neurocrit. Care. 2006;5:222–229. doi: 10.1385/NCC:5:3:222.
    1. Nakura T., Osuka K., Inukai T., Takagi T., Takayasu M. Soluble gp130 regulatess interleukin-6 in cerebrospinal fluid after subarachnoid haemorrhage. J. Neurol. Neurosurg. Psychiatry. 2011;82:952–954. doi: 10.1136/jnnp.2009.197244.
    1. Sarrafzadeh A., Schlenk F., Meisel A., Dreier J., Vajkoczy P., Meisel C. Immunodepression after aneurysmalsubarachnoidhemorrhage. Stroke. 2011;42:53–58. doi: 10.1161/STROKEAHA.110.594705.
    1. Paul R., Koedel U., Winkler F., Kieseier B.C., Fontana A., Kopf M., Hartung H.P., Pfister H.W. Lack of IL-6 augments inflammatory response but decreases vascular permeability in bacterial meningitis. Brain J. Neurol. 2003;126:1873–1882. doi: 10.1093/brain/awg171.
    1. Miller B.A., Turan N. Inflammation, vasospasm, and brain injury after subarachnoid hemorrhage. BioMed Res. Int. 2014:384342. doi: 10.1155/2014/384342.
    1. Oke S.L., Tracey K.J. The Inflammatory Reflex and the Role of Complementary and Alternative Medical Therapies. Ann. N. Y. Acad. Sci. 2009;1172:172–180. doi: 10.1196/annals.1393.013.
    1. Wang H., Bloom O., Zhang M., Vishnubhakat J.M., Ombrellino M., Che J., Frazier A., Yang H., Ivanova S., Borovikova L., et al. HMG-1 as a late mediator of endotoxin lethality in mice. Science. 1999;285:248–251. doi: 10.1126/science.285.5425.248.
    1. Tsung A., Sahai R., Tanaka H., Nakao A., Fink M.P., Lotze M.T., Yang H., Li J., Tracey K.J., Geller D.A., et al. The nuclear factor HMGB1 mediates hepatic injury after murine liver ischemia-reperfusion. J. Exp. Med. 2005;201:1135–1143. doi: 10.1084/jem.20042614.
    1. Muhammad S., Barakat W., Stoyanov S., Murikinati S., Yang H., Tracey K.J., Bendszus M., Rossetti G., Nawroth P.P., Bierhaus A., et al. The HMGB1 Receptor RAGE Mediates Ischemic Brain Damage. J. Neurosci. 2008;28:12023–12031. doi: 10.1523/JNEUROSCI.2435-08.2008.
    1. Jones S.A. Directing transition from innate to acquired immunity: Defining a role for IL-6. J. Immunol. 2005;175:3463–3468. doi: 10.4049/jimmunol.175.6.3463.
    1. Diehl S., Chow C.W., Weiss L., Palmetshofer A., Twardzik T., Rounds L., Serfling E., Davis R.J., Anguita J., Rincon M. Induction of NFATc2 expression by interleukin 6 promotes T helper type 2 differentiation. J. Exp. Med. 2002;196:39–49. doi: 10.1084/jem.20020026.
    1. Diehl S., Rincon M. The two faces of IL-6 on Th1/Th2 differentiation. Mol. Immunol. 2002;39:531–536. doi: 10.1016/S0161-5890(02)00210-9.
    1. Gertz K., Kronenberg G., Kälin R.E., Baldinger T., Werner C., Balkaya M., Eom G.D., Hellmann-Regen J., Kröber J., Miller K.R., et al. Essential role of interleukin-6 in post-stroke angiogenesis. Brain J. Neurol. 2012;135:1964–1980. doi: 10.1093/brain/aws075.
    1. McMahon C.J., Hopkins S., Vail A., King A.T., Smith D., Illingworth K.J., Clark S., Rothwell N.J., Tyrrell P.J. Inflammation as a predictor for delayed cerebral ischemia after aneurysmal subarachnoid haemorrhage. J. Neurointerv. Surg. 2012 doi: 10.1136/neurintsurg-2012-010386.
    1. Fraunberger P., Wang Y., Holler E., Parhofer K.G., Nagel D., Walli A.K., Seidel D. Prognostic value of interleukin 6, procalcitonin, and C-reactive protein levels in intensive care unit patients during first increase of fever. Shock. 2006;26:10–12. doi: 10.1097/.
    1. Mroczko B., Groblewska M., Gryko M., Kedra B., Szmitkowski M. Diagnostic usefulness of serum interleukin 6 (IL-6) and C-reactive protein (CRP) in the differentiation between pancreatic cancer and chronic pancreatitis. J. Clin. Lab. Anal. 2010;24:256–261. doi: 10.1002/jcla.20395.
    1. Panichi V., Maggiore U., Taccola D., Migliori M., Rizza G.M., Consani C., Bertini A., Sposini S., Perez-Garcia R., Rindi P., et al. Interleukin-6 is a stronger predictor of total and cardiovascular mortality than C-reactive protein in haemodialysis patients. Nephrol. Dial. Transplant. 2004;19:1154–1160. doi: 10.1093/ndt/gfh052.
    1. Herrmann O., Tarabin V., Suzuki S., Attigah N., Coserea I., Schneider A., Vogel J., Prinz S., Schwab S., Monyer H., et al. Regulation of Body Temperature and Neuroprotection by Endogenous Interleukin-6 in Cerebral Ischemia. J. Cereb. Blood Flow Metab. 2003;23:406–415. doi: 10.1097/01.WCB.0000055177.50448.FA.

Source: PubMed

3
Prenumerera