Language production and working memory in classic galactosemia from a cognitive neuroscience perspective: future research directions

Inge Timmers, Job van den Hurk, Francesco Di Salle, M Estela Rubio-Gozalbo, Bernadette M Jansma, Inge Timmers, Job van den Hurk, Francesco Di Salle, M Estela Rubio-Gozalbo, Bernadette M Jansma

Abstract

Most humans are social beings and we express our thoughts and feelings through language. In contrast to the ease with which we speak, the underlying cognitive and neural processes of language production are fairly complex and still little understood. In the hereditary metabolic disease classic galactosemia, failures in language production processes are among the most reported difficulties. It is unclear, however, what the underlying neural cause of this cognitive problem is. Modern brain imaging techniques allow us to look into the brain of a thinking patient online - while she or he is performing a task, such as speaking. We can measure indirectly neural activity related to the output side of a process (e.g. articulation). But most importantly, we can look into the planning phase prior to an overt response, hence tapping into subcomponents of speech planning. These components include verbal memory, intention to speak, and the planning of meaning, syntax, and phonology. This paper briefly introduces cognitive theories on language production and methods used in cognitive neuroscience. It reviews the possibilities of applying them in experimental paradigms to investigate language production and verbal memory in galactosemia.

Figures

Fig. 1
Fig. 1
Speech production model. Displayed are cognitive stages (left) and brain areas (right) involved in language production. The numbers in the boxes represent estimates of temporal encoding for each type of information. After picture presentation (0 ms), the visual system encodes the stimulus and activates a preverbal concept. The appropriate lexical entries are selected (150-225 ms, medial temporal gyrus (d)). The next stage involves syntactic encoding (left inferior frontal gyrus (IFG), taking place around 250-350 ms post stimulus (a)). Finally, phonological encoding takes place (300-500 ms, posterior superior temporal gyrus, angular gyrus (c)). The message is then presumably assembled in the left IFG. After all planning has taken place, the finished speech plan is sent to (pre-) motor areas (b) to be prepared for articulation. An online self-monitoring feedback loop (275 – 400 ms, superior temporal gyrus (e)) is capable of keeping track of the speech production process and intervenes if required. It has to be noted that boxes or stages are for display purpose only. Speech production does not involve encapsulated modules, but involves several brain regions that interact in a cascading manner. (Model adapted from Indefrey and Levelt , plus recent temporal information, for example Sahin et al. 2009)
Fig. 2
Fig. 2
Local field potentials (LFPs) versus ERPs during syntactical encoding. A descriptive comparison is made between the intracranial local field potentials of Sahin et al. (2009) and the extracranial EEG/ERP study of our group. Both studies investigated the brain’s response to the encoding of syntax. Sahin et al. instructed their participants to make grammatical inflections while our participants were asked to utter a complete sentence in response to an animated scene. Lower panel: Overlay of average LFP and ERP within the same time scale. Interestingly, despite the differences in the method and in the syntactic task, the morphology of the waveforms is strikingly similar in the target peak latencies (200, 320, 450 ms). Granting the assumption that peaks in LFP and ERP signal reflect maximal neural activity, this descriptive comparison suggests common aspects in the two signal types for language encoding. Upper panel: The brain area depicted in blue represents Broca’s area, i.e. the location of the intracranial recording. The red circle reflects the presumed source of the EEG data (in correspondence with the PET study results of Indefrey et al. ; , using the same paradigm). The EEG source still has to be confirmed
Fig. 3
Fig. 3
Working memory model. The anterior temporal pole (a) is believed to play an important role in semantic memory retrieval and representation of specific semantic items. Regions in the fusiform gyrus (b) have proven to show differential responses to different categories of objects, converging in specificity from posterior to anterior regions. The inferior frontal gyrus (IFG) (c, d, e) is involved in several (semantic) working memory related tasks: rehearsal (c), selection (d) and production (e). The lateral temporal cortex (f) is related to the perception of motion, of both biological (dorsal) and artificial (ventral) objects, and to lexical memory, whereas the posterior superior temporal gyrus (h) is the presumed region where phonologic loops are maintained. Finally, dorsolateral prefrontal cortex (dlPFC) (g) has an overall executive role in working memory tasks (after Cabeza et al. ; and Martin and Chao 2001). Obvious is the overlap of this memory network with the language network depicted in Fig. 1

References

    1. Antshel KM, Epstein IO, Waisbren SE. Cognitive strengths and weaknesses in children and adolescents homozygous for the galactosemia Q188R mutation: a descriptive study. Neuropsychology. 2004;18(4):658–664. doi: 10.1037/0894-4105.18.4.658.
    1. Baddeley A. Working Memory. Science. 1992;255(5044):556–559. doi: 10.1126/science.1736359.
    1. Baddeley A. The episodic buffer: a new component of working memory? Trends Cogn Sci. 2000;4(11):417–423. doi: 10.1016/S1364-6613(00)01538-2.
    1. Baddeley A. Working memory and language: an overview. J Commun Disord. 2003;36(3):189–208. doi: 10.1016/S0021-9924(03)00019-4.
    1. Bock K. Sentence Production: From Mind to Mouth. In: Miller JL, Eimas PD, editors. Speech, Language, and Communication. Handbook of perception and cognition. San Diego: US: Academic Press; 1995. pp. 181–216.
    1. Bock K, Levelt W. Language Production: Grammatical Encoding. In: Gernsbacher MA, editor. Handbook of Psycholinguists. San Diego: Academic Press; 1994. pp. 945–984.
    1. Brown S, Ngan E, Liotti M. A larynx area in the human motor cortex. Cereb Cortex. 2008;18(4):837–845. doi: 10.1093/cercor/bhm131.
    1. Brown S, Laird AR, Pfordresher PQ, Thelen SM, Turkeltaub P, Liotti M. The somatotopy of speech: Phonation and articulation in the human motor cortex. Brain Cogn. 2009;70(1):31–41. doi: 10.1016/j.bandc.2008.12.006.
    1. Cabeza R, Nyberg L. Imaging cognition II: An empirical review of 275 PET and fMRI studies. J Cogn Neurosci. 2000;12(1):1–47. doi: 10.1162/08989290051137585.
    1. Cabeza R, Dolcos F, Graham R, Nyberg L. Similarities and differences in the neural correlates of episodic memory retrieval and working memory. Neuroimage. 2002;16(2):317–330. doi: 10.1006/nimg.2002.1063.
    1. Cao LH, Yu WB, Wu YH, Yu L. The evolution, complex structures and function of septin proteins. Cell Mol Life Sci. 2009;66(20):3309–3323. doi: 10.1007/s00018-009-0087-2.
    1. Catani M, Mesulam M. The arcuate fasciculus and the disconnection theme in language and aphasia: history and current state. Cortex. 2008;44(8):953–961. doi: 10.1016/j.cortex.2008.04.002.
    1. Coles M, Rugg M. Event-related brain potentials: an introduction. In: Rugg M, Coles M, editors. Electrophysiology of Mind: Event-Related Brain Potentials and Cognition. New York, US: Oxford University Press; 1995. pp. 1–26.
    1. Coman DJ, Murray DW, Byrne JC, et al. Galactosemia, a Single Gene Disorder With Epigenetic Consequences. Pediatr Res. 2010;67(3):286–292. doi: 10.1203/PDR.0b013e3181cbd542.
    1. de Zubicaray GI, Wilson SJ, McMahon KL, Muthiah S. The Semantic Interference Effect in the Picture-Word Paradigm: An Event-Related fMRI Study Employing Overt Responses. Hum Brain Mapp. 2001;14:218–227. doi: 10.1002/hbm.1054.
    1. de Zubicaray GI, McMahon KL, Eastburn MM, Wilson SJ. Orthographic/Phonological Facilitation of Naming Responses in the Picture-Word Task: An Event-Related fMRI Study Using Overt Vocal Responding. Neuroimage. 2002;16:1084–1093. doi: 10.1006/nimg.2002.1135.
    1. de Zubicaray GI, McMahon KL, Eastburn MM, Pringle A. Top-down influences on lexical selection during spoken word production: A 4 T fMRI investigation of refractory effects in picture naming. Hum Brain Mapp. 2006;27(11):864–873. doi: 10.1002/hbm.20227.
    1. Dubroff JG, Ficicioglu C, Segal S, Wintering NA, Alavi A, Newberg AB. FDG-PET findings in patients with galactosaemia. J Inherit Metab Dis. 2008;31(4):533–539. doi: 10.1007/s10545-008-0806-0.
    1. Enard W, Przeworski M, Fisher SE, et al. Molecular evolution of FOXP2, a gene involved in speech and language. Nature. 2002;418:869–872. doi: 10.1038/nature01025.
    1. Fisher SE, Scharff C. FOXP2 as a molecular window into speech and language. Trends Genet. 2009;25(4):166–177. doi: 10.1016/j.tig.2009.03.002.
    1. Glaser WR, Düngelhoff F-J. The time course of picture-word interference. J Exp Psychol Hum Percept Perform. 1984;10(5):640–654. doi: 10.1037/0096-1523.10.5.640.
    1. Gubbels CS, Land JA, Rubio-Gozalbo ME. Fertility and Impact of Pregnancies on the Mother and Child in Classic Galactosemia. Obstet Gynecol Surv. 2008;63(5):334–343. doi: 10.1097/OGX.0b013e31816ff6c5.
    1. Gujar SK, Maheshwari S, Bjorkman-Burtscher I, Sundgren PC. Magnetic resonance spectroscopy. J Neuroophthalmol. 2005;25(3):217–226.
    1. Hagoort P. On Broca, brain, and binding: a new framework. Trends Cogn Sci. 2005;9(9):416–423. doi: 10.1016/j.tics.2005.07.004.
    1. Haller S, Radue EW, Erb M, Grodd W, Kircher T. Overt sentence production in event-related fMRI. Neuropsychologia. 2005;43(5):807–814. doi: 10.1016/j.neuropsychologia.2004.09.007.
    1. Hilger I, Trost R, Reichenbach JR, et al. MR imaging of Her-2/neu protein using magnetic nanoparticles. Nanotechnology. 2007;18:135103. doi: 10.1088/0957-4484/18/13/135103.
    1. Hirschfeld G, Jansma B, Bolte J, Zwitserlood P. Interference and facilitation in overt speech production investigated with event-related potentials. NeuroReport. 2008;19(12):1227–1230. doi: 10.1097/WNR.0b013e328309ecd1.
    1. Holton JB, Walter JH, Tyfield LA. Galactosemia. In: Scriver CR, Childs B, editors. The metabolic & molecular bases of inherited disease. New York: McGraw-Hill; 2001. pp. 1553–1587.
    1. Hughes J, Ryan S, Lambert D, et al. Outcomes of Siblings with Classical Galactosemia. J Pediatr. 2009;154(5):721–726. doi: 10.1016/j.jpeds.2008.11.052.
    1. Indefrey P, Levelt WJM. The spatial and temporal signatures of word production components. Cognition. 2004;92(1–2):101–144. doi: 10.1016/j.cognition.2002.06.001.
    1. Indefrey P, Brown CM, Hellwig F et al (2001) A neural correlate of syntactic encoding during speech production. Proceedings of the National Academy of Sciences of the United States of America 98: 5933-5936
    1. Indefrey P, Hellwig F, Herzog H, Seitz RJ, Hagoort P. Neural responses to the production and comprehension of syntax in identical utterances. Brain Lang. 2003;89:312–319. doi: 10.1016/S0093-934X(03)00352-3.
    1. Kaufman FR, McBride Chang C, Manis FR, Wolff JA, Nelson MD. Cognitive functioning, neurologic status and brain imaging in classical galactosemia. Eur J Pediatr. 1995;154(7 Suppl 2):S2–S5. doi: 10.1007/BF02143794.
    1. Kutas M, Schmitt BM. Language in Microvolts. In: Banich MT, Mack M, editors. Mind, brain, and language: Multidisciplinary perspectives. NJ: Lawrence Erlbaum Associates; 2003. pp. 171–209.
    1. Levelt WJM (1989) Speaking: From Intention to Articulation. The MIT Press, Cambridge, MA
    1. Levelt WJM, Roelofs AS, Meyer A. A theory of lexical access in speech production. Behav Brain Sci. 1999;22(1):1–75.
    1. Luck SJ (2005) An Introduction to the Event-Related Potential Technique. MIT Press, Cambridge, MA
    1. Marek A, Habets B, Jansma BM, Nager W, Munte TF. Neural correlates of conceptualisation difficulty during the preparation of complex utterances. Aphasiology. 2007;21(12):1147–1156. doi: 10.1080/02687030600646577.
    1. Martin A, Chao LL. Semantic memory and the brain: structure and processes. Curr Opin Neurobiol. 2001;11(2):194–201. doi: 10.1016/S0959-4388(00)00196-3.
    1. Meyer AS. Investigation of Phonological Encoding through Speech Error Analyses - Achievements, Limitations, and Alternatives. Cognition. 1992;42(1–3):181–211. doi: 10.1016/0010-0277(92)90043-H.
    1. Munte TF, Schiltz K, Kutas M. When temporal terms belie conceptual order. Nature. 1998;395(6697):71–73. doi: 10.1038/25731.
    1. Nelson MD, Wolff JA, Cross CA, Donnell GN, Kaufman FR. Galactosemia: Evaluation with MR Imaging. Radiology. 1992;184:255–261.
    1. Nierenberg J, Pomara N, Hoptman MJ, Sidtis JJ, Ardekani BA, Lim KO. Abnormal white matter integrity in healthy apolipoprotein E epsilon4 carriers. NeuroReport. 2005;16:1369–1372. doi: 10.1097/01.wnr.0000174058.49521.16.
    1. Panis B, Forget PP, van Kroonenburgh MJ, et al. Bone metabolism in galactosemia. Bone. 2004;35(4):982–987. doi: 10.1016/j.bone.2004.06.004.
    1. Postma A. Detection of errors during speech production: a review of speech monitoring models. Cognition. 2000;77(2):97–131. doi: 10.1016/S0010-0277(00)00090-1.
    1. Potter NL, Lazarus JAC, Johnson JM, Steiner RD, Shriberg LD. Correlates of language impairment in children with galactosaemia. J Inherit Metab Dis. 2008;31(4):524–532. doi: 10.1007/s10545-008-0877-y.
    1. Reading SA, Yassa MA, Bakker A, et al. Regional white matter change in pre-symptomatic Huntington's disease: a diffusion tensor imaging study. Psychiatry Res. 2005;140:55–62. doi: 10.1016/j.pscychresns.2005.05.011.
    1. Riecker A, Mathiak K, Wildgruber D, et al. fMRI reveals two distinct cerebral networks subserving speech motor control. Neurology. 2005;64(4):700–706.
    1. Rilling JK, Glasser MF, Preuss TM, et al. The evolution of the arcuate fasciculus revealed with comparative DTI. Nat Neurosci. 2008;11:426–428. doi: 10.1038/nn2072.
    1. Robertson A, Singh RH, Guerrero NV, Hundley M, Elsas LJ. Outcomes analysis of verbal dyspraxia in classic galactosemia. Genet Med. 2000;2(2):142–148. doi: 10.1097/00125817-200003000-00005.
    1. Rubio-Gozalbo ME, Gubbels CS, Bakker JA, Menheere PPCA, Wodzig WKWH, Land JA. Gonadal function in male and female patients with classic galactosemia. Hum Reprod Update. 2010;16(2):177–188. doi: 10.1093/humupd/dmp038.
    1. Sahin NT, Pinker S, Cash SS, Schomer D, Halgren E. Sequential Processing of Lexical, Grammatical, and Phonological Information Within Broca's Area. Science. 2009;326(5951):445–449. doi: 10.1126/science.1174481.
    1. Schweitzer S, Shin Y, Jakobs C, Brodehl J. Long-term outcome in 134 patients with galactosemia. Eur J Pediatr. 1993;152:36–43. doi: 10.1007/BF02072514.
    1. Snijders TM, Vosse T, Kempen G, Van Berkum JJA, Petersson KM, Hagoort P. Retrieval and Unification of Syntactic Structure in Sentence Comphrehension: an fMRI Study Using Word-Category Ambiguity. Cereb Cortex. 2009;19:1493–1503. doi: 10.1093/cercor/bhn187.
    1. Stroop JR. Studies of interference in serial verbal reactions. J Exp Psychol. 1935;18:643–662. doi: 10.1037/h0054651.
    1. Waggoner DD, Buist NRM, Donnell GN (1990) Long-Term Prognosis in Galactosemia: Results of a Survey of 350 Cases. J Inherit Metab Dis 802-818
    1. Waisbren SE, Norman TR, Schnell RR, Levy HL. Speech and language deficits in early-treated children with galactosemia. J Pediatr. 1983;102(1):75–77. doi: 10.1016/S0022-3476(83)80292-3.

Source: PubMed

3
Prenumerera