Association between free light chain levels, and disease progression and mortality in chronic kidney disease

Lucie Desjardins, Sophie Liabeuf, Aurélie Lenglet, Horst-Dieter Lemke, Raymond Vanholder, Gabriel Choukroun, Ziad A Massy, European Uremic Toxin (EUTox) Work Group, Lucie Desjardins, Sophie Liabeuf, Aurélie Lenglet, Horst-Dieter Lemke, Raymond Vanholder, Gabriel Choukroun, Ziad A Massy, European Uremic Toxin (EUTox) Work Group

Abstract

Immunoglobulin free light chains (FLCs) form part of the middle molecule group of uremic toxins. Accumulation of FLCs has been observed in patients with chronic kidney disease (CKD). The aim of the present study was to measure FLC levels in patients at different CKD stages and to assess putative associations between FLC levels on one hand and biochemical/clinical parameters and mortality on the other. One hundred and forty patients at CKD stages 2-5D were included in the present study. Routine clinical biochemistry assays and assays for FLC kappa (κ) and lambda (λ) and other uremic toxins were performed. Vascular calcification was evaluated using radiological techniques. The enrolled patients were prospectively monitored for mortality. Free light chain κ and λ levels were found to be elevated in CKD patients (especially in those on hemodialysis). Furthermore, FLC κ and λ levels were positively correlated with inflammation, aortic calcification and the levels of various uremic toxins levels. A multivariate linear regression analysis indicated that FLC κ and λ levels were independently associated with CKD stages and β2 microglobulin levels. Elevated FLC κ and λ levels appeared to be associated with mortality. However, this association disappeared after adjustment for a propensity score including age, CKD stage and aortic calcification. In conclusion, our results indicate that FLC κ and λ levels are elevated in CKD patients and are associated with inflammation, vascular calcification and levels of other uremic toxins. The observed link between elevated FLC levels and mortality appears to depend on other well-known factors.

Figures

Figure 1
Figure 1
Levels of free light chain κ (A), λ (B) and κ/λ (C) as a function of the chronic kidney disease (CKD) stage. *p < 0.05 vs. healthy volunteers (HVs); $ p < 0.05 vs. CKD stage 2; £ < 0.05 vs. CKD stage 3; § p < 0.05 vs. CKD stage 4; ¤ p < 0.05 vs. CKD stage 5. CKD: chronic kidney disease. The dotted lines indicate the reference value derived from HVs (11.3 mg/L for FLC κ and 12.6 mg/L for FLC λ).
Figure 2
Figure 2
Kaplan–Meyer estimates of overall mortality for patients as a function of the median free light chain κ (A) and λ (B) levels.

References

    1. Vanholder R., de Smet R., Glorieux G., Argiles A., Baurmeister U., Brunet P., Clark W., Cohen G., de Deyn P.P., Deppisch R., et al. Review on uremic toxins: Classification, concentration, and interindividual variability. Kidney Int. 2003;63:1934–1943. doi: 10.1046/j.1523-1755.2003.00924.x.
    1. Dispenzieri A., Kyle R., Merlini G., Miguel J.S., Ludwig H., Hajek R., Palumbo A., Jagannath S., Blade J., Lonial S., et al. International Myeloma Working Group guidelines for serum-free light chain analysis in multiple myeloma and related disorders. Leukemia. 2008;23:215–224.
    1. Katzmann J.A., Abraham R.S., Dispenzieri A., Lust J.A., Kyle R.A. Diagnostic performance of quantitative κ and λ free light chain assays in clinical practice. Clin. Chem. 2005;51:878–881. doi: 10.1373/clinchem.2004.046870.
    1. Solomon A. Light chains of human immunoglobulins. Methods Enzymol. 1985;116:101–121. doi: 10.1016/S0076-6879(85)16008-8.
    1. Hutchison C.A., Harding S., Hewins P., Mead G.P., Townsend J., Bradwell A.R., Cockwell P. Quantitative assessment of serum and urinary polyclonal free light chains in patients with chronic kidney disease. Clin. J. Am. Soc. Nephrol. 2008;3:1684–1690. doi: 10.2215/CJN.02290508.
    1. Herrera G.A. Renal lesions associated with plasma cell dyscrasias: practical approach to diagnosis, new concepts, and challenges. Arch. Pathol. Lab. Med. 2009;133:249–267.
    1. Kapur U., Barton K., Fresco R., Leehey D.J., Leehy D.J., Picken M.M. Expanding the pathologic spectrum of immunoglobulin light chain proximal tubulopathy. Arch. Pathol. Lab. Med. 2007;131:1368–1372.
    1. Haynes R., Hutchison C.A., Emberson J., Dasgupta T., Wheeler D.C., Townend J.N., Landray M.J., Cockwell P. Serum free light chains and the risk of ESRD and death in CKD. Clin. J. Am. Soc. Nephrol. 2011;6:2829–2837. doi: 10.2215/CJN.03350411.
    1. Martin W., Abraham R., Shanafelt T., Clark R.J., Bone N., Geyer S.M., Katzmann J.A., Bradwell A., Kay N.E., Witzig T.E. Serum-free light chain-a new biomarker for patients with B-cell non-Hodgkin lymphoma and chronic lymphocytic leukemia. Transl. Res. 2007;149:231–235. doi: 10.1016/j.trsl.2006.11.001.
    1. Cohen G., Rudnicki M., Schmaldienst S., Hörl W.H. Effect of dialysis on serum/plasma levels of free immunoglobulin light chains in end-stage renal disease patients. Nephrol. Dial. Transplant. 2002;17:879–883. doi: 10.1093/ndt/17.5.879.
    1. Cohen G., Haag-Weber M., Mai B., Deicher R., Hörl W.H. Effect of immunoglobulin light chains from hemodialysis and continuous ambulatory peritoneal dialysis patients on polymorphonuclear leukocyte functions. J. Am. Soc. Nephrol. 1995;6:1592–1599.
    1. Cohen G., Rudnicki M., Höorl W.H. Uremic toxins modulate the spontaneous apoptotic cell death and essential functions of neutrophils. Kidney Int. 2001;59:S48–S52. doi: 10.1046/j.1523-1755.2001.07818.x.
    1. Tonelli M., Sacks F., Pfeffer M., Jhangri G.S., Curhan G. Biomarkers of inflammation and progression of chronic kidney disease. Kidney Int. 2005;68:237–245.
    1. Shlipak M.G., Fried L.F., Crump C., Bleyer A.J., Manolio T.A., Tracy R.P., Furberg C.D., Psaty B.M. Elevations of inflammatory and procoagulant biomarkers in elderly persons with renal insufficiency. Circulation. 2003;107:87–92.
    1. Cheung A.K., Rocco M.V., Yan G., Leypoldt J.K., Levin N.W., Greene T., Agodoa L., Bailey J., Beck G.J., Clark W., et al. Serum β-2 microglobulin levels predict mortality in dialysis patients: Results of the HEMO study. J. Am. Soc. Nephrol. 2006;17:546–555. doi: 10.1681/ASN.2005020132.
    1. Kim K.M., Kim S.-S., Kim H., Koo T., Im E.Y., Kim S.B. Higher serum beta2-microglobulin levels are associated with better survival in chronic hemodialysis patients: A reverse epidemiology. Clin. Nephrol. 2011;75:458–465. doi: 10.5414/CNP75458.
    1. Liabeuf S., Lenglet A., Desjardins L., Neirynck N., Glorieux G., Lemke H.-D., Vanholder R., Diouf M., Choukroun G., Massy Z.A. Plasma beta-2 microglobulin is associated with cardiovascular disease in uremic patients. Kidney Int. 2012;82:1297–1303. doi: 10.1038/ki.2012.301.
    1. Astor B.C., Muth B., Kaufman D.B., Pirsch J.D., Michael Hofmann R., Djamali A. Serum β2-microglobulin at discharge predicts mortality and graft loss following kidney transplantation. Kidney Int. 2013;84:810–817. doi: 10.1038/ki.2013.172.
    1. Foster M.C., Inker L.A., Levey A.S., Selvin E., Eckfeldt J., Juraschek S.P., Coresh J. Novel filtration markers as predictors of all-cause and cardiovascular mortality in US adults. Am. J. Kidney Dis. 2013;62:42–51. doi: 10.1053/j.ajkd.2013.01.016.
    1. Meert N., Eloot S., Waterloos M.-A., Landschoot M.V., Dhondt A., Glorieux G., Ledebo I., Vanholder R. Effective removal of protein-bound uraemic solutes by different convective strategies: A prospective trial. Nephrol. Dial. Transplant. 2009;24:562–570.
    1. Stevens L.A., Coresh J., Schmid C.H., Feldman H.I., Froissart M., Kusek J., Rossert J., Van Lente F., Bruce R.D., Zhang Y.L., et al. Estimating GFR using serum cystatin C alone and in combination with serum creatinine: A pooled analysis of 3418 individuals With CKD. Am. J. Kidney Dis. 2008;51:395–406. doi: 10.1053/j.ajkd.2007.11.018.
    1. National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease: Evaluation, classification, and stratification. Am. J. Kidney Dis. 2002;39:S1–S266.
    1. Zureik M., Temmar M., Adamopoulos C., Bureau J.-M., Courbon D., Thomas F., Bean K., Touboul P.-J., Ducimetière P., Benetos A. Carotid plaques, but not common carotid intima-media thickness, are independently associated with aortic stiffness. J. Hypertens. 2002;20:85–93. doi: 10.1097/00004872-200201000-00013.
    1. Asmar R., Benetos A., Topouchian J., Laurent P., Pannier B., Brisac A.M., Target R., Levy B.I. Assessment of arterial distensibility by automatic pulse wave velocity measurement. Validation and clinical application studies. Hypertension. 1995;26:485–490. doi: 10.1161/01.HYP.26.3.485.
    1. Kauppila L.I., Polak J.F., Cupples L.A., Hannan M.T., Kiel D.P., Wilson P.W. New indices to classify location, severity and progression of calcific lesions in the abdominal aorta: A 25-year follow-up study. Atherosclerosis. 1997;132:245–250. doi: 10.1016/S0021-9150(97)00106-8.
    1. Agatston A.S., Janowitz W.R., Hildner F.J., Zusmer N.R., Viamonte M., Jr., Detrano R. Quantification of coronary artery calcium using ultrafast computed tomography. J. Am. Coll. Cardiol. 1990;15:827–832. doi: 10.1016/0735-1097(90)90282-T.
    1. Rosenbaum P.R., Rubin D.B. The central role of the propensity score in observational studies for causal effects. Biometrika. 1983;70:41–55. doi: 10.1093/biomet/70.1.41.

Source: PubMed

3
Prenumerera