Adenovirus type 5 SARS-CoV-2 vaccines delivered orally or intranasally reduced disease severity and transmission in a hamster model

Stephanie N Langel, Susan Johnson, Clarissa I Martinez, Sarah N Tedjakusuma, Nadine Peinovich, Emery G Dora, Philip J Kuehl, Hammad Irshad, Edward G Barrett, Adam D Werts, Sean N Tucker, Stephanie N Langel, Susan Johnson, Clarissa I Martinez, Sarah N Tedjakusuma, Nadine Peinovich, Emery G Dora, Philip J Kuehl, Hammad Irshad, Edward G Barrett, Adam D Werts, Sean N Tucker

Abstract

Transmission-blocking strategies that slow the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and protect against coronavirus disease 2019 (COVID-19) are needed. We have developed an orally delivered adenovirus type 5-vectored SARS-CoV-2 vaccine candidate that expresses the spike protein. Here, we demonstrated that hamsters vaccinated by the oral or intranasal route had robust and cross-reactive antibody responses. We then induced a postvaccination infection by inoculating vaccinated hamsters with SARS-CoV-2. Orally or intranasally vaccinated hamsters had decreased viral RNA and infectious virus in the nose and lungs and experienced less lung pathology compared to mock-vaccinated hamsters after SARS-CoV-2 challenge. Naïve hamsters exposed in a unidirectional air flow chamber to mucosally vaccinated, SARS-CoV-2-infected hamsters also had lower nasal swab viral RNA and exhibited fewer clinical symptoms than control animals, suggesting that the mucosal route reduced viral transmission. The same platform encoding the SARS-CoV-2 spike and nucleocapsid proteins elicited mucosal cross-reactive SARS-CoV-2-specific IgA responses in a phase 1 clinical trial (NCT04563702). Our data demonstrate that mucosal immunization is a viable strategy to decrease SARS-CoV-2 disease and airborne transmission.

Figures

Fig. 1.. Oral and intranasal r-Ad-S vaccination…
Fig. 1.. Oral and intranasal r-Ad-S vaccination induced robust IgG and IgA antibodies in golden hamsters.
Index hamsters were immunized with oral r-Ad-S, intranasal (IN) r-Ad-S, intramuscular (IM) spike protein (S) or mock (oral) (n = 4 per group) and inoculated with SARS-CoV-2 seven weeks later. (A) Experimental design schematic. Figure created with BioRender.com (B) Serum anti-spike protein IgG antibody endpoint titers were measured at weeks 0, 3 and 6 post immunization by enzyme-linked immunosorbent assay (ELISA). (C) Serum anti-spike protein IgG antibody endpoint titers were measured at week 6 post immunization against the spike protein of the Wuhan, Beta, and Delta SARS-CoV-2 variants by ELISA. (D) Surrogate neutralizing antibodies (antibodies capable of blocking binding of SARS-CoV-2 spike protein to ACE2) titers were measured in serum at week 6. (E) Serum anti-spike protein IgA antibody titers were measured (MSD arbitrary units (AU)/sample) at weeks 0, 3, and 6 post immunization using the MSD platform and normalized to day 0 AU values. (F) anti-spike protein IgA antibodies were measured in BAL fluid using the MSD platform. Data were analyzed by a one-way ANOVA and Dunnett’s multiple comparisons. Comparisons were made between vaccinated groups and mock (oral) controls for (B, D, E and F). Error bars represent the standard error of the mean (SEM). *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001.
Fig. 2.. Oral and intranasal r-Ad-S vaccination…
Fig. 2.. Oral and intranasal r-Ad-S vaccination decreased SARS-CoV-2 RNA and infectious virus in nasal swabs and lungs.
(A) Nasal swabs were collected on days 1, 3, and 5 post-inoculation in index hamsters (n = 4 per group) and viral genomic RNA loads in these samples were determined by quantitative reverse transcription PCR (qRT-PCR) of the N gene. (B) Nasal swabs were collected on day 1 post inoculation and infectious virus titers were determined by TCID50. (C) Lung tissue was collected at necropsy (day 5) and RNA was isolated for SARS-CoV-2 detection by qRT-PCR of the N gene and (D) infectious viral titers by TCID50. The dotted line represents Lower Limit of Quantification (LLOQ), with data below the limit of detection plotted at ½ LLOQ. Data were analyzed by a one-way ANOVA and Dunnett’s multiple comparisons (A to C) or Kruskal-Wallis with Dunn’s multiple comparisons (D). Comparisons were made between vaccinated groups and mock (oral) controls. Error bars represent the SEM. *P<0.05, **P<0.01.
Fig. 3.. Oral and intranasal r-Ad-S vaccination…
Fig. 3.. Oral and intranasal r-Ad-S vaccination reduced disease indicators, including body weight loss, lung weight, and lung pathology scores in index hamsters.
(A) Daily weight change and (B) terminal body weights were determined by the percent of day 0 weight (relative to SARS-CoV-2 inoculation) for index hamsters (n = 4 per group). (C) relative terminal lung weights and (D) lung pathology scores were determined. Severity grade for red discoloration of the lung was based on a 0 to 4 scale indicating percent of whole lung affected: none (no grade), minimal (1), mild (2), moderate (3), marked (4) correlating to 0, 1 to 25, 26 to 50, 51 to 75, or 76 to 100% affected, respectively. Data were analyzed by a one-way ANOVA and Dunnett’s multiple comparisons. Comparisons were made between vaccinated groups and mock (oral) controls. Error bars represent the SEM. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001.
Fig. 4.. Oral and intranasal SARS-CoV-2 vaccination…
Fig. 4.. Oral and intranasal SARS-CoV-2 vaccination decreased SARS-CoV-2 aerosol transmission.
(A) Nasal swabs were collected on days 1 and 3 post-inoculation from index animals (n = 4 per group) and from naïve animals (n = 16 per group) on days 1, 3, and (B) 5 after exposure to index, infected hamsters in airborne transmission chambers. Viral genomic RNA loads in these samples were determined by qRT-PCR of the N gene. (C) Lung tissue was collected at necropsy (day 5) and RNA was isolated for SARS-CoV-2 detection by qRT-PCR of the N gene. (D) Infectious viral titers in lung tissue were determined by TCID50. In (A to D) The dotted line represents the LLOQ, with data below the limit of detection plotted at ½ LLOQ. (E) Terminal body weights were determined by the percent weight change versus day 0 (relative to SARS-CoV-2 inoculation). (F) Terminal lung weights and (G) lung pathology scores were determined. Severity grade for red discoloration of the lung was based on a 0 to 4 scale as in Fig. 3D. In (E to G), data were analyzed by a one-way ANOVA and Dunnett’s multiple comparisons. Comparisons were made between vaccinated groups and mock (oral) controls. For all panels, error bars represent the SEM. *P <0.05, **P <0.01, ***P < 0.001, ****P<0.0001.
Fig. 5.. Cross reactive anti-spike protein IgA…
Fig. 5.. Cross reactive anti-spike protein IgA in the mucosal and salivary compartments is elicited by oral Ad5 vaccination in a subset of participants.
(A and B) Fold change (day 29 versus day 1) in spike (S)-, nucleocapsid (N)-, or receptor binding domain (RBD)-specific IgA antibodies in nasal (A) and saliva (B) samples were measured by the MSD platform (n = 35). (C and D). The fold change in IgA specific to endemic human coronaviruses was measured in both nasal (C) and saliva (D) samples respectively, in the responders (n = 12 or n=7 respectively) from (A) and (B). The red dotted line represents a two-fold change, by which individuals were classified as responders.
https://www.ncbi.nlm.nih.gov/pmc/articles/instance/9097881/bin/keyimage.jpg

References

    1. F. P. Polack et al., Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. 383, 2603-2615 (2020).
    1. L. R. Baden et al., Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. 384, 403-416 (2020).
    1. Voysey M., Clemens S. A. C., Madhi S. A., Weckx L. Y., Folegatti P. M., Aley P. K., Angus B., Baillie V. L., Barnabas S. L., Bhorat Q. E., Bibi S., Briner C., Cicconi P., Collins A. M., Colin-Jones R., Cutland C. L., Darton T. C., Dheda K., Duncan C. J. A., Emary K. R. W., Ewer K. J., Fairlie L., Faust S. N., Feng S., Ferreira D. M., Finn A., Goodman A. L., Green C. M., Green C. A., Heath P. T., Hill C., Hill H., Hirsch I., Hodgson S. H. C., Izu A., Jackson S., Jenkin D., Joe C. C. D., Kerridge S., Koen A., Kwatra G., Lazarus R., Lawrie A. M., Lelliott A., Libri V., Lillie P. J., Mallory R., Mendes A. V. A., Milan E. P., Minassian A. M., McGregor A., Morrison H., Mujadidi Y. F., Nana A., O’Reilly P. J., Padayachee S. D., Pittella A., Plested E., Pollock K. M., Ramasamy M. N., Rhead S., Schwarzbold A. V., Singh N., Smith A., Song R., Snape M. D., Sprinz E., Sutherland R. K., Tarrant R., Thomson E. C., Török M. E., Toshner M., Turner D. P. J., Vekemans J., Villafana T. L., Watson M. E. E., Williams C. J., Douglas A. D., Hill A. V. S., Lambe T., Gilbert S. C., Pollard A. J.; Oxford COVID Vaccine Trial Group , Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: An interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet 397, 99–111 (2021). 10.1016/S0140-6736(20)32661-1
    1. Lange B., Gerigk M., Tenenbaum T., Breakthrough Infections in BNT162b2-Vaccinated Health Care Workers. N. Engl. J. Med. 385, 1145–1146 (2021). 10.1056/NEJMc2108076
    1. P. Y. Chia et al., Virological and serological kinetics of SARS-CoV-2 Delta variant vaccine-breakthrough infections: a multi-center cohort study. 2021.2007.2028.21261295 (2021).
    1. F. P. Lyngse et al., Effect of Vaccination on Household Transmission of SARS-CoV-2 Delta VOC. 2022.2001.2006.22268841 (2022).
    1. Liu L., Iketani S., Guo Y., Chan J. F.-W., Wang M., Liu L., Luo Y., Chu H., Huang Y., Nair M. S., Yu J., Chik K. K.-H., Yuen T. T.-T., Yoon C., To K. K.-W., Chen H., Yin M. T., Sobieszczyk M. E., Huang Y., Wang H. H., Sheng Z., Yuen K.-Y., Ho D. D., Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2. Nature 602, 676–681 (2022). 10.1038/s41586-021-04388-0
    1. R.-G. L. II, L. Money, in LA Times. (, 2022).
    1. V’kovski P., Kratzel A., Steiner S., Stalder H., Thiel V., Coronavirus biology and replication: Implications for SARS-CoV-2. Nat. Rev. Microbiol. 19, 155–170 (2021). 10.1038/s41579-020-00468-6
    1. Kim L., Liebowitz D., Lin K., Kasparek K., Pasetti M. F., Garg S. J., Gottlieb K., Trager G., Tucker S. N., Safety and immunogenicity of an oral tablet norovirus vaccine, a phase I randomized, placebo-controlled trial. JCI Insight 3, e121077 (2018). 10.1172/jci.insight.121077
    1. Liebowitz D., Gottlieb K., Kolhatkar N. S., Garg S. J., Asher J. M., Nazareno J., Kim K., McIlwain D. R., Tucker S. N., Efficacy and immune correlates of protection induced by an oral influenza vaccine evaluated in a phase 2, placebo-controlled human experimental infection study. Lancet Infect. Dis. 20, 435–444 (2020). 10.1016/S1473-3099(19)30584-5
    1. Peters W., Brandl J. R., Lindbloom J. D., Martinez C. J., Scallan C. D., Trager G. R., Tingley D. W., Kabongo M. L., Tucker S. N., Oral administration of an adenovirus vector encoding both an avian influenza A hemagglutinin and a TLR3 ligand induces antigen specific granzyme B and IFN-γ T cell responses in humans. Vaccine 31, 1752–1758 (2013). 10.1016/j.vaccine.2013.01.023
    1. McIlwain D. R., Chen H., Rahil Z., Bidoki N. H., Jiang S., Bjornson Z., Kolhatkar N. S., Martinez C. J., Gaudillière B., Hedou J., Mukherjee N., Schürch C. M., Trejo A., Affrime M., Bock B., Kim K., Liebowitz D., Aghaeepour N., Tucker S. N., Nolan G. P., Human influenza virus challenge identifies cellular correlates of protection for oral vaccination. Cell Host Microbe 29, 1828–1837.e5 (2021). 10.1016/j.chom.2021.10.009
    1. Mora J. R., von Andrian U. H., Differentiation and homing of IgA-secreting cells. Mucosal Immunol. 1, 96–109 (2008). 10.1038/mi.2007.14
    1. Kunkel E. J., Butcher E. C., Plasma-cell homing. Nat. Rev. Immunol. 3, 822–829 (2003). 10.1038/nri1203
    1. Dabisch P. A., Biryukov J., Beck K., Boydston J. A., Sanjak J. S., Herzog A., Green B., Williams G., Yeager J., Bohannon J. K., Holland B., Miller D., Reese A. L., Freeburger D., Miller S., Jenkins T., Rippeon S., Miller J., Clarke D., Manan E., Patty A., Rhodes K., Sweeney T., Winpigler M., Price O., Rodriguez J., Altamura L. A., Zimmerman H., Hail A. S., Wahl V., Hevey M., Seroconversion and fever are dose-dependent in a nonhuman primate model of inhalational COVID-19. PLOS Pathog. 17, e1009865 (2021). 10.1371/journal.ppat.1009865
    1. Ryan K. A., Bewley K. R., Fotheringham S. A., Slack G. S., Brown P., Hall Y., Wand N. I., Marriott A. C., Cavell B. E., Tree J. A., Allen L., Aram M. J., Bean T. J., Brunt E., Buttigieg K. R., Carter D. P., Cobb R., Coombes N. S., Findlay-Wilson S. J., Godwin K. J., Gooch K. E., Gouriet J., Halkerston R., Harris D. J., Hender T. H., Humphries H. E., Hunter L., Ho C. M. K., Kennard C. L., Leung S., Longet S., Ngabo D., Osman K. L., Paterson J., Penn E. J., Pullan S. T., Rayner E., Skinner O., Steeds K., Taylor I., Tipton T., Thomas S., Turner C., Watson R. J., Wiblin N. R., Charlton S., Hallis B., Hiscox J. A., Funnell S., Dennis M. J., Whittaker C. J., Catton M. G., Druce J., Salguero F. J., Carroll M. W., Dose-dependent response to infection with SARS-CoV-2 in the ferret model and evidence of protective immunity. Nat. Commun. 12, 81 (2021). 10.1038/s41467-020-20439-y
    1. Yinda C. K., Port J. R., Bushmaker T., Offei Owusu I., Purushotham J. N., Avanzato V. A., Fischer R. J., Schulz J. E., Holbrook M. G., Hebner M. J., Rosenke R., Thomas T., Marzi A., Best S. M., de Wit E., Shaia C., van Doremalen N., Munster V. J., K18-hACE2 mice develop respiratory disease resembling severe COVID-19. PLOS Pathog. 17, e1009195 (2021). 10.1371/journal.ppat.1009195
    1. M. Imai et al., Syrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure development. 117, 16587-16595 (2020).
    1. Selvaraj P., Lien C. Z., Liu S., Stauft C. B., Nunez I. A., Hernandez M., Nimako E., Ortega M. A., Starost M. F., Dennis J. U., Wang T. T., SARS-CoV-2 infection induces protective immunity and limits transmission in Syrian hamsters. Life Sci. Alliance 4, e202000886 (2021). 10.26508/lsa.202000886
    1. Levine-Tiefenbrun M., Yelin I., Katz R., Herzel E., Golan Z., Schreiber L., Wolf T., Nadler V., Ben-Tov A., Kuint J., Gazit S., Patalon T., Chodick G., Kishony R., Initial report of decreased SARS-CoV-2 viral load after inoculation with the BNT162b2 vaccine. Nat. Med. 27, 790–792 (2021). 10.1038/s41591-021-01316-7
    1. Johnson S., et al. ., Oral Vaccination Protects Against Severe Acute Respiratory Syndrome Coronavirus 2 in a Syrian Hamster Challenge Model. J. Infect. Dis. (2021).
    1. Sterlin D., Mathian A., Miyara M., Mohr A., Anna F., Claër L., Quentric P., Fadlallah J., Devilliers H., Ghillani P., Gunn C., Hockett R., Mudumba S., Guihot A., Luyt C.-E., Mayaux J., Beurton A., Fourati S., Bruel T., Schwartz O., Lacorte J.-M., Yssel H., Parizot C., Dorgham K., Charneau P., Amoura Z., Gorochov G., IgA dominates the early neutralizing antibody response to SARS-CoV-2. Sci. Transl. Med. 13, eabd2223 (2021). 10.1126/scitranslmed.abd2223
    1. Wec A. Z., Wrapp D., Herbert A. S., Maurer D. P., Haslwanter D., Sakharkar M., Jangra R. K., Dieterle M. E., Lilov A., Huang D., Tse L. V., Johnson N. V., Hsieh C.-L., Wang N., Nett J. H., Champney E., Burnina I., Brown M., Lin S., Sinclair M., Johnson C., Pudi S., Bortz R. 3rd, Wirchnianski A. S., Laudermilch E., Florez C., Fels J. M., O’Brien C. M., Graham B. S., Nemazee D., Burton D. R., Baric R. S., Voss J. E., Chandran K., Dye J. M., McLellan J. S., Walker L. M., Broad neutralization of SARS-related viruses by human monoclonal antibodies. Science 369, 731–736 (2020). 10.1126/science.abc7424
    1. Ejemel M., Li Q., Hou S., Schiller Z. A., Tree J. A., Wallace A., Amcheslavsky A., Kurt Yilmaz N., Buttigieg K. R., Elmore M. J., Godwin K., Coombes N., Toomey J. R., Schneider R., Ramchetty A. S., Close B. J., Chen D.-Y., Conway H. L., Saeed M., Ganesa C., Carroll M. W., Cavacini L. A., Klempner M. S., Schiffer C. A., Wang Y., A cross-reactive human IgA monoclonal antibody blocks SARS-CoV-2 spike-ACE2 interaction. Nat. Commun. 11, 4198 (2020). 10.1038/s41467-020-18058-8
    1. Suzuki T., Kawaguchi A., Ainai A., Tamura S., Ito R., Multihartina P., Setiawaty V., Pangesti K. N. A., Odagiri T., Tashiro M., Hasegawa H., Relationship of the quaternary structure of human secretory IgA to neutralization of influenza virus. Proc. Natl. Acad. Sci. U.S.A. 112, 7809–7814 (2015). 10.1073/pnas.1503885112
    1. Asahi-Ozaki Y., Yoshikawa T., Iwakura Y., Suzuki Y., Tamura S., Kurata T., Sata T., Secretory IgA antibodies provide cross-protection against infection with different strains of influenza B virus. J. Med. Virol. 74, 328–335 (2004). 10.1002/jmv.20173
    1. Krammer F., The human antibody response to influenza A virus infection and vaccination. Nat. Rev. Immunol. 19, 383–397 (2019). 10.1038/s41577-019-0143-6
    1. Bertoletti A., Le Bert N., Qui M., Tan A. T., SARS-CoV-2-specific T cells in infection and vaccination. Cell. Mol. Immunol. 18, 2307–2312 (2021). 10.1038/s41423-021-00743-3
    1. B. A. Flitter et al., Mucosal Immunization of Cynomolgus Macaques with Adenoviral Vector Vaccine Elicits Neutralizing Nasal and Serum Antibody to Several SARS-CoV-2 Variants. 2022.2002.2021.481345 (2022).
    1. R. G. King et al., Single-dose intranasal administration of AdCOVID elicits systemic and mucosal immunity against SARS-CoV-2 in mice. 2020.2010.2010.331348 (2020).
    1. Altimmune, “Update On AdCOVID™ Phase 1 Clinical Trial,” .
    1. R. M. Burke, J. E. Tate, C. D. Kirkwood, A. D. Steele, U. D. Parashar, Current and new rotavirus vaccines. 32, 435-444 (2019).
    1. Bandyopadhyay A. S., Garon J., Seib K., Orenstein W. A., Polio vaccination: Past, present and future. Future Microbiol. 10, 791–808 (2015). 10.2217/fmb.15.19
    1. A. C. Moore et al., Pre-clinical studies of a recombinant adenoviral mucosal vaccine to prevent SARS-CoV-2 infection. 2020.2009.2004.283853 (2020).
    1. Ying L., Alvira C. M., Cornfield D. N., Developmental differences in focal adhesion kinase expression modulate pulmonary endothelial barrier function in response to inflammation. Am. J. Physiol. Lung Cell. Mol. Physiol. 315, L66–L77 (2018). 10.1152/ajplung.00363.2017
    1. He T. C., Zhou S., da Costa L. T., Yu J., Kinzler K. W., Vogelstein B., A simplified system for generating recombinant adenoviruses. Proc. Natl. Acad. Sci. U.S.A. 95, 2509–2514 (1998). 10.1073/pnas.95.5.2509
    1. Kim L., Liebowitz D., Lin K., Kasparek K., Pasetti M. F., Garg S. J., Gottlieb K., Trager G., Tucker S. N., Safety and immunogenicity of an oral tablet norovirus vaccine, a phase I randomized, placebo-controlled trial. JCI Insight 3, e121077 (2018). 10.1172/jci.insight.121077
    1. Reed L. J., Muench H.; M. Reed L.J. , H., A simple method of estimating fifty percent endpoints. Am. J. Epidemiol. 27, 493–497 (1938). 10.1093/oxfordjournals.aje.a118408

Source: PubMed

3
Prenumerera