Possible Role of Ivermectin Mucoadhesive Nanosuspension Nasal Spray in Recovery of Post-COVID-19 Anosmia

Zaki F Aref, Shamardan Ezz Eldin S Bazeed, Mohammed H Hassan, Abeer S Hassan, Ali A Ghweil, Mennatallah Ali Abdelrhman Sayed, Alaa Rashad, Haggagy Mansour, Aida A Abdelmaksoud, Zaki F Aref, Shamardan Ezz Eldin S Bazeed, Mohammed H Hassan, Abeer S Hassan, Ali A Ghweil, Mennatallah Ali Abdelrhman Sayed, Alaa Rashad, Haggagy Mansour, Aida A Abdelmaksoud

Abstract

Purpose: Anosmia or hyposmia, with or without taste changes, are common symptoms that occur in SARS-CoV-2 infection and frequently persist as post-COVID-19 manifestations. This is the first trial to assess the potential value of using local ivermectin in the form of a mucoadhesive nanosuspension nasal spray to treat post-COVID-19 anosmia.

Methods: It is a controlled, randomized trial. Participants were recruited from South Valley University Hospitals in Qena, Upper Egypt, from the ENT and Chest Diseases Departments and outpatient clinics. Patients with persistent post COVID-19 anosmia were randomly divided into two groups, the first group "ivermectin group" included 49 patients treated by ivermectin nanosuspension mucoadhesive nasal spray (two puffs per day). The second group included 47 patients "placebo group" who received saline nasal spray. Follow- up of anosmia [using Visual analogue scale (VAS)] in all patients for three months or appearance of any drug related side effects was done.

Results: The mean duration of pre-treatment post COVID-19 anosmia was 19.5± 5.8 days in the ivermectin group and 19.1± 5.9 days in the placebo group,p˃0.05. Regarding the median duration of anosmia recovery, the ivermectin group recovered from post COVID-19 anosmia in 13 days compared to 50 days in the placebo group, p˂ 0.001. Following the first week of ivermectin nanosuspension mucoadhesive nasal spray therapy, the ivermectin group had a significantly higher percentage of anosmia recovery (59.2%) than the placebo group (27.7%), p˂ 0.01, with no significant differences in recovery rates between the two groups at 1, 2, and 3 months of follow up, p˃0.05.

Conclusion: In the small number of patients treated, local Ivermectin exhibited no side effects. In persistent post-COVID-19 anosmia, it could be used for one week at the most as the treatment was extended to one, two and three months, with no difference in recovery compared to the placebo treatment.

Trial registration no: NCT04951362.

Keywords: ivermectin; nanosuspension mucoadhesive nasal spray; post-COVID-19 anosmia.

Conflict of interest statement

The authors report no conflicts of interest in relation to this work.

© 2022 Aref et al.

Figures

Figure 1
Figure 1
Flow chart showing difference between both group in different follow up durations.
Figure 2
Figure 2
Characteristics of the used ivermectin nanosuspension. (A) Particle size distribution. (B) Transmission electron micrograph of the prepared ivermectin nanosuspension.
Figure 3
Figure 3
In-vitro release profiles of ivermectin from mucoadhesive nanosuspension in SNF (simulated nasal fluid) pH 5.5 at 37 °C. Data expressed at mean ± SD (n=3).
Figure 4
Figure 4
Comparision between the study groups according to the percentage (%) of recovery of anosmia in different follow up durations (after one week, one month, two months and three months).
Figure 5
Figure 5
The median duration of post-COVID-19 persistent anosmia recovery (days) in the study groups.

References

    1. World Health Organization. Coronavirus disease (COVID-2019) situation reports; 2020. Available from: . Accessed April 9, 2020.
    1. Centers for Disease Control and Prevention. Coronavirus disease 2019 (COVID-19): cases in U.S; 2020. Available from: . Accessed April 9, 2020.
    1. Whittaker A, Anson M, Harky A. Neurological Manifestations of COVID-19: a systematic review and current update. Acta Neurol Scand. 2020;142(1):14–22. doi:10.1111/ane.13266
    1. Weiss P, Murdoch DR. Clinical course and mortality risk of severe COVID-19. Lancet. 2020;395(10229):1014–1015. doi:10.1016/S0140-6736(20)30633-4
    1. Lozada-Nur F, Chainani-Wu N, Fortuna G, Sroussi H. Dysgeusia in COVID-19: possible Mechanisms and Implications. Oral Surg Oral Med Oral Pathol Oral Radiol. 2020;130(3):344–346. doi:10.1016/j.oooo.2020.06.016
    1. Gane SB, Kelly C, Hopkins C. Isolated sudden onset anosmia in COVID-19 infection. A novel syndrome? Rhinology. 2020;58(3):299–301. doi:10.4193/Rhin20.114
    1. Carfì A, Bernabei R, Landi F; Gemelli Against COVID-19 Post-Acute Care Study Group. Persistent Symptoms in Patients After Acute COVID-19. JAMA. 2020;324(6):603–605. doi:10.1001/jama.2020.12603
    1. Vaira LA, Salzano G, Fois AG, Piombino P, De Riu G. Potential pathogenesis of ageusia and anosmia in COVID-19 patients. Int Forum Allergy Rhinol. 2020;10(9):1103–1104. doi:10.1002/alr.22593
    1. Fodoulian L, Tuberosa J, Rossier D, et al. SARS-CoV-2 Receptors and Entry Genes Are Expressed in the Human Olfactory Neuroepithelium and Brain. iScience. 2020;23(12):101839. doi:10.1016/j.isci.2020.101839
    1. van Riel D, Verdijk R, Kuiken T. The olfactory nerve: a shortcut for influenza and other viral diseases into the central nervous system. J Pathol. 2015;235(2):277–287. doi:10.1002/path.4461
    1. Cazzolla AP, Lovero R, Lo Muzio L, et al. Taste and Smell Disorders in COVID-19 Patients: role of Interleukin-6. ACS Chem. Neurosci. 2020;11:2774–2781.
    1. Dou Q, Chen H-N, Wang K, et al. Iver-mectin induces cytostatic autophagy by blocking the PAK1/Aktaxis in breast cancer. Cancer Res. 2016;76(15):4457–4469. doi:10.1158/0008-5472.CAN-15-2887
    1. Zhang X, Song Y, Xiong H. Inhibitory effects of ivermectin on nitric oxide and prostaglandin E2 production in LPS-stimulated RAW 264.7 macrophages. Int Immunopharmacol. 2009;9(3):354–359. doi:10.1016/j.intimp.2008.12.016
    1. Ci X, Li H, Yu Q. Avermectin exerts anti-inflammatory effect by downregulating the nuclear transcription factor kappa-B and mitogen-activated protein kinase activation pathway. Fundam Clin Pharmacol. 2009;23(4):449–455. doi:10.1111/j.1472-8206.2009.00684.x
    1. Ventre E, Rozières A, Lenief V. Topical ivermectin improves allergic skin inflammation. Allergy. 2017;72(8):1212–1221. doi:10.1111/all.13118
    1. Abdelmaksoud AA, Ghweil AA, Hassan MH, et al. Olfactory Disturbances as Presenting Manifestation Among Egyptian Patients with COVID-19: possible Role of Zinc. Biol Trace Elem Res. 2021;3:1–8.
    1. González Canga A, Sahagún Prieto AM, Diez Liébana MJ, Fernández Martínez N, Sierra Vega M, García Vieitez JJ. The pharmacokinetics and interactions of ivermectin in humans--a mini-review. AAPS J. 2008;10(1):42–46. doi:10.1208/s12248-007-9000-9
    1. Mastrangelo E, Pezzullo M, De Burghgraeve T, et al. Ivermectin is a potent inhibitor of flavivirus replication specifically targeting NS3 helicase activity: new prospects for an old drug. J Antimicrob Chemother. 2012;67(8):1884–1894. doi:10.1093/jac/dks147
    1. Götz V, Magar L, Dornfeld D, et al. Influenza A viruses escape from MxA restriction at the expense of efficient nuclear vRNP import. Sci Rep. 2016;6(1):23138. doi:10.1038/srep23138
    1. Caly L, Druce JD, Catton MG, Jans DA, Wagstaff KM. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 invitro. Antiviral Res. 2020;178:104787. doi:10.1016/j.antiviral.2020.104787
    1. Ketkar H, Yang L, Wormser GP, Wang P. Lack of efficacy of ivermectin for prevention of a lethal Zika virus infection in a murine system. Diagn Microbiol Infect Dis. 2019;95(1):38–40. doi:10.1016/j.diagmicrobio.2019.03.012
    1. Alshweiat A, Csóka I, Tömösi F, et al. Nasal delivery of nanosuspension-based mucoadhesive formulation with improved bioavailability of loratadine: preparation, characterization, and in vivo evaluation. Int J Pharm. 2020;579:119166. doi:10.1016/j.ijpharm.2020.119166
    1. Alshweiat A, Ambrus R, Csoka I. Intranasal Nanoparticulate Systems as Alternative Route of Drug Delivery. Curr Med Chem. 2019;26(35):6459–6492. doi:10.2174/0929867326666190827151741
    1. Aref ZF, Bazeed SEES, Hassan MH, et al. Clinical, Biochemical and Molecular Evaluations of Ivermectin Mucoadhesive Nanosuspension Nasal Spray in Reducing Upper Respiratory Symptoms of Mild COVID-19. Int J Nanomedicine. 2021;16:4063–4072. doi:10.2147/IJN.S313093
    1. Chong LY, Head K, Hopkins C, et al. Saline irrigation for chronic rhinosinusitis. Cochrane Database Syst Rev. 2016;4(4):CD011995. doi:10.1002/14651858.CD011995.pub2
    1. Yildiz E, Koca Yildiz S, Kuzu S, Günebakan Ç, Bucak A, Kahveci OK. Comparison of the Healing Effect of Nasal Saline Irrigation with Triamcinolone Acetonide Versus Nasal Saline Irrigation alone in COVID-19 Related Olfactory Dysfunction: a Randomized Controlled Study. Indian J Otolaryngol Head Neck Surg. 2021;1–6. doi:10.1007/s12070-021-02749-9
    1. Prajapati DP, Shahrvini B, MacDonald BV, et al. Association of subjective olfactory dysfunction and 12-item odor identification testing in ambulatory COVID-19 patients. Int Forum Allergy Rhinol. 2020;10(11):1209–1217. doi:10.1002/alr.22688
    1. Junior OV, Cardoso FAR, Giufrida WM, de Souza MF, Cardozo-Filho L. Production and computational fluid dynamics-based modeling of PMMA nanoparticles impregnated with ivermectin by a supercritical antisolvent process. J CO2 Util. 2020;35:47–58. doi:10.1016/j.jcou.2019.08.025
    1. Xia D, Quan P, Piao H, et al. Preparation of stable nitrendipine nanosuspensions using the precipitation-ultrasonication method for enhancement of dissolution and oral bioavailability. Eur J Pharm Sci. 2010;40(4):325–334. doi:10.1016/j.ejps.2010.04.006
    1. El-Mahdy MM, Hassan AS, El-Badry M, El-Gindy GE. Performance of curcumin in nanosized carriers niosomes and ethosomes as potential anti-inflammatory delivery system for topical application. Bull Pharm Sci Assiut. 2020;43(1):105–122. doi:10.21608/bfsa.2020.93599
    1. López-Medina E, López P, Hurtado IC, et al. Effect of Ivermectin on Time to Resolution of Symptoms Among Adults With Mild COVID-19: a Randomized Clinical Trial. JAMA. 2021;325(14):1426–1435. doi:10.1001/jama.2021.3071
    1. Vallejos J, Zoni R, Bangher M, et al. Ivermectin to prevent hospitalizations in patients with COVID-19 (IVERCOR-COVID19) a randomized, double-blind, placebo-controlled trial. BMC Infect Dis. 2021;21(1):635. doi:10.1186/s12879-021-06348-5
    1. Ahmed S, Karim MM, Ross AG, et al. A five-day course of ivermectin for the treatment of COVID-19 may reduce the duration of illness. Int J Infect Dis. 2021;103:214–216. doi:10.1016/j.ijid.2020.11.191
    1. Kow CS, Merchant HA, Mustafa ZU, Hasan SS. The association between the use of ivermectin and mortality in patients with COVID-19: a meta-analysis. Pharmacol Rep. 2021;73(5):1473–1479. doi:10.1007/s43440-021-00245-z
    1. Han AY, Mukdad L, Long JL, Lopez IA. Anosmia in COVID-19: mechanisms and Significance. Chem Senses. 2020;45(6):423–428. doi:10.1093/chemse/bjaa040
    1. Stewart JN, Mounir S, Talbot PJ. Human coronavirus gene expression in the brains of multiple sclerosis patients. Virology. 1992;191(1):502–505. doi:10.1016/0042-6822(92)90220-J
    1. Arbour N, Day R, Newcombe J, Talbot PJ. Neuroinvasion by human respiratory coronaviruses. J Virol. 2000;74(19):8913–8921. doi:10.1128/JVI.74.19.8913-8921.2000
    1. Hung EC, Chim SS, Chan PK, et al. Detection of SARS coronavirus RNA in the cerebrospinal fluid of a patient with severe acute respiratory syndrome. Clin Chem. 2003;49(12):2108–2109. doi:10.1373/clinchem.2003.025437
    1. Gu J, Gong E, Zhang B, et al. Multiple organ infection and the pathogenesis of SARS. J Exp Med. 2005;202(3):415–424. doi:10.1084/jem.20050828
    1. Hamming I, Timens W, Bulthuis ML, Lely AT, Navis G, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004;203(2):631–637. doi:10.1002/path.1570
    1. . Provided by the U.S. National Library of Medicine. Available from: . Accessed August 28, 2020.
    1. Maraie NK, Almajidi YQ. Application of nanoemulsion technology for preparation and evaluation of intranasal mucoadhesive nano-in-situ gel for ondansetron HCl. J Glob Pharm Technol. 2018;10(03):431–442.
    1. Saindane NS, Pagar KP, Vavia PR. Nanosuspension based in situ gelling nasal spray of carvedilol: development, in vitro and in vivo characterization. AAPS PharmSciTech. 2013;14(1):189–199. doi:10.1208/s12249-012-9896-y

Source: PubMed

3
Prenumerera