Rapid-acting antidepressant ketamine, its metabolites and other candidates: A historical overview and future perspective

Kenji Hashimoto, Kenji Hashimoto

Abstract

Major depressive disorder (MDD) is one of the most disabling psychiatric disorders. Approximately one-third of the patients with MDD are treatment resistant to the current antidepressants. There is also a significant therapeutic time lag of weeks to months. Furthermore, depression in patients with bipolar disorder (BD) is typically poorly responsive to antidepressants. Therefore, there exists an unmet medical need for rapidly acting antidepressants with beneficial effects in treatment-resistant patients with MDD or BD. Accumulating evidence suggests that the N-methyl-D-aspartate receptor (NMDAR) antagonist ketamine produces rapid and sustained antidepressant effects in treatment-resistant patients with MDD or BD. Ketamine is a racemic mixture comprising equal parts of (R)-ketamine (or arketamine) and (S)-ketamine (or esketamine). Because (S)-ketamine has higher affinity for NMDAR than (R)-ketamine, esketamine was developed as an antidepressant. On 5 March 2019, esketamine nasal spray was approved by the US Food and Drug Administration. However, preclinical data suggest that (R)-ketamine exerts greater potency and longer-lasting antidepressant effects than (S)-ketamine in animal models of depression and that (R)-ketamine has less detrimental side-effects than (R,S)-ketamine or (S)-ketamine. In this article, the author reviews the historical overview of the antidepressant actions of enantiomers of ketamine and its major metabolites norketamine and hydroxynorketamine. Furthermore, the author discusses the other potential rapid-acting antidepressant candidates (i.e., NMDAR antagonists and modulators, low-voltage-sensitive T-type calcium channel inhibitor, potassium channel Kir4.1 inhibitor, negative modulators of γ-aminobutyric acid, and type A [GABAA ] receptors) to compare them with ketamine. Moreover, the molecular and cellular mechanisms of ketamine's antidepressant effects are discussed.

Keywords: (R)-ketamine (or arketamine), (S)-ketamine (or esketamine), (S)-norketamine; gut microbiota.

© 2019 The Author. Psychiatry and Clinical Neurosciences published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Psychiatry and Neurology.

Figures

Figure 1
Figure 1
Chemical structure of phencyclidine, (R,S)‐ketamine, and enantiomers of ketamine.
Figure 2
Figure 2
Major metabolites norketamine and hydroxynorketamine of (S)‐ketamine and (R)‐ketamine.
Figure 3
Figure 3
Proposed cellular mechanisms of (S)‐ketamine, (R)‐ketamine, (S)‐norketamine, and (2R,6R)‐hydroxynorketamine (HNK) for antidepressant effects. Both (S)‐ketamine and (R)‐ketamine activate AMPA receptors (AMPAR). Subsequently, (S)‐ketamine and (R)‐ketamine activate mammalian target of the rapamycin complex 1 (mTORC1) signaling and MAPK/ERK kinase (MEK)–extracellular signal‐regulated kinase (ERK) signaling, respectively, and then activate brain‐derived neurotrophic factor (BDNF)–tropomyosin receptor kinase B (TrkB) signaling, resulting in antidepressant effects. Antidepressant effects of (R)‐ketamine are more potent than (S)‐ketamine, although the precise mechanisms underlying the different efficacies of two enantiomers are currently unknown.189 In contrast, (S)‐norketamine, a major metabolite of (S)‐ketamine, may not activate AMPAR. (S)‐norketamine activates mTORC1 signaling and then activates BDNF–TrkB signaling, resulting in antidepressant effects.141 Zanos et al.85 demonstrated that metabolism of (2R,6R)‐HNK from (R,S)‐ketamine is essential for ketamine’s antidepressant actions, and that AMPAR activation and mTORC1 signaling may play a role in the antidepressant effects of (2R,6R)‐HNK. However, our data do not support the conclusion of Zanos et al.85 In addition our data suggest that, unlike (R)‐ketamine, (2R,6R)‐HNK does not have robust antidepressant actions in rodents with depression‐like phenotype.

References

    1. World Health Organization . Depression. [Cited 7 April 2017]. Available from URL:
    1. Trivedi MH, Rush AJ, Wisniewski SR et al Evaluation of outcomes with citalopram for depression using measurement‐based care in STAR*D: Implications for clinical practice. Am. J. Psychiatry 2006; 163: 28–40.
    1. Kupka RW, Altshuler LL, Nolen WA et al Three times more days depressed than manic or hypomanic in both bipolar I and bipolar II disorder. Bipolar Disord. 2007; 9: 531–535.
    1. Hidalgo‐Mazzei D, Berk M, Cipriani A et al Treatment‐resistant and multi‐therapy‐resistant criteria for bipolar depression: Consensus definition. Br. J. Psychiatry 2019; 214: 27–35.
    1. Tondo L, Vázquez GH, Baldessarini RJ. Options for pharmacological treatment of refractory bipolar depression. Curr. Psychiatry Rep. 2014; 16: 431.
    1. Li CT, Bai YM, Huang YL et al Association between antidepressant resistance in unipolar depression and subsequent bipolar disorder: Cohort study. Br. J. Psychiatry 2012; 200: 45–51.
    1. Newport DJ, Carpenter LL, McDonald WM et al Ketamine and other NMDA antagonists: Early clinical trials and possible mechanisms in depression. Am. J. Psychiatry 2015; 172: 950–966.
    1. Kishimoto T, Chawia JM, Hagi K et al Single‐dose infusion ketamine and non‐ketamine N‐methyl‐D‐aspartate receptor antagonists for unipolar and bipolar depression: A meta‐analysis of efficacy, safety and time trajectories. Psychol. Med. 2016; 46: 1459–1472.
    1. Wilkinson ST, Ballard ED, Bloch MH et al The effect of a single dose of intravenous ketamine on suicidal ideation: A systematic review and individual participant data meta‐analysis. Am. J. Psychiatry 2018; 175: 150–158.
    1. Zhang K, Hashimoto K. An update on ketamine and its two enantiomers as rapid‐acting antidepressants. Expert Rev. Neurother. 2018; 19: 83–92.
    1. Duman RS. Ketamine and rapid‐acting antidepressants: A new era in the battle against depression and suicide. F1000Res 2018; 7: 659.
    1. Ebert B, Mikkelsen S, Thorkildsen C, Borgbjerg FM. Norketamine, the main metabolite of ketamine, is a non‐competitive NMDA receptor antagonist in the rat cortex and spinal cord. Eur. J. Pharmacol. 1997; 333: 99–104.
    1. Moaddel R, Abdrakhmanova G, Kozak J et al Sub‐anesthetic concentrations of (R,S)‐ketamine metabolites inhibit acetylcholine‐evoked currents in α7 nicotinic acetylcholine receptors. Eur. J. Pharmacol. 2013; 698: 228–234.
    1. Luby ED, Cohen BD, Rosenbaum G, Gottlieb JS, Kelley R. Study of a new schizophrenic drug sernyl. Arch. Neurol. Psychiatry 1959; 81: 363–369.
    1. Javitt DC, Zukin SR. Recent advances in the phencyclidine model of schizophrenia. Am. J. Psychiatry 1991; 148: 1301–1308.
    1. Javitt DC, Zukin SR, Heresco‐Levy U, Umbricht D. Has an angel shown the way? Etiological and therapeutic implications of the PCP/NMDA model of schizophrenia. Schizophr. Bull. 2012; 38: 958–966.
    1. Domino EF, Luby ED. Phencyclidine/schizophrenia: One view toward the past, the other to the future. Schizophr. Bull. 2012; 38: 914–919.
    1. Domino EF. Taming the ketamine tiger. Anesthesiology 2010; 113: 678–684.
    1. Tyler MW, Yourish HB, Ionescu DF, Haggarty SJ. Classics in chemical neuroscience: Ketamine. ACS Chem. Nerosci. 2017; 8: 1122–1134.
    1. Domino EF, Chodoff P, Corssen G. Pharmacological effects of CF‐581, a new dissociative anesthetic, in man. Clin. Pharmacol. Ther. 1965; 6: 279–291.
    1. Krystal JH, Karper LP, Seibyl JP et al Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch. Gen. Psychiatry 1994; 51: 199–214.
    1. Muetzelfeldt L, Kamboj SK, Rees H, Taylor J, Morgan CJ, Curran HV. Journey through the K‐hole: Phenomenological aspects of ketamine use. Drug Alcohol Depend. 2008; 95: 219–229.
    1. Sassano‐Higgins S, Baron D, Juarez G, Esmaili N, Gold M. A review of ketamine abuse and diversion. Depress. Anxiety 2016; 33: 718–727.
    1. Liao Y, Tang YL, Hao W. Ketamine and international regulations. Am. J. Drug Alcohol Abuse 2017; 43: 495–504.
    1. Jones JL, Mateus CF, Malcolm RJ, Brady KT, Back SE. Efficacy of ketamine in the treatment of substance use disorders: A systematic review. Front. Psych. 2018; 9: 277.
    1. Shahani R, Streutker C, Dickson B, Stewart RJ. Ketamine‐associated ulcerative cystitis: A new clinical entity. Urology 2007; 69: 810–812.
    1. Myers FA Jr, Bluth MH, Cheung WW. Ketamine: A cause of urinary tract dysfunction. Clin. Lab. Med. 2016; 36: 721–744.
    1. Yamakura T, Sakimura K, Shimoji K. The stereoselective effects of ketamine isomers on heteromeric N‐methyl‐D‐aspartate receptor channels. Anesth. Analg. 2000; 91: 225–229.
    1. White PF, Schüttler J, Shafer A, Stanski DR, Horai Y, Trevor AJ. Comparative pharmacology of the ketamine isomers. Studies in volunteers. Br. J. Anaesth. 1985; 57: 197–203.
    1. Berman RM, Cappiello A, Anand A et al Antidepressant effects of ketamine in depressed patients. Biol. Psychiatry 2000; 47: 351–354.
    1. Zarate CA, Singh JB, Carlson PJ et al A randomized trial of an N‐methyl‐D‐aspartate antagonist in treatment‐resistant major depression. Arch. Gen. Psychiatry 2006; 63: 856–864.
    1. Price RB, Nock MK, Charney DS, Mathew SJ. Effects of intravenous ketamine on explicit and implicit measures of suicidality in treatment‐resistant depression. Biol. Psychiatry 2009; 66: 522–526.
    1. Larkin GL, Beautrais AL. A preliminary naturalistic study of low‐dose ketamine for depression and suicide ideation in the emergency department. Int. J. Neuropsychopharmacol. 2011; 14: 1127–1131.
    1. Su TP, Chen MH, Li CT et al Dose‐related effects of adjunctive ketamine in Taiwanese patients with treatment‐resistant depression. Neuropsychopharmacology 2017; 42: 2482–2492.
    1. Murrough JW, Iosifescu DV, Chang LC et al Antidepressant efficacy of ketamine in treatment‐resistant major depression: A two‐site randomized controlled trial. Am. J. Psychiatry 2013; 170: 1134–1142.
    1. Murrough JW, Soleimani L, DeWilde KE et al Ketamine for rapid reduction of suicidal ideation: A randomized controlled trial. Psychol. Med. 2015; 45: 3571–3580.
    1. Grunebaum MF, Galfalvy HC, Choo TH et al Ketamine for rapid reduction of suicidal thoughts in major depression: A midazolam‐controlled randomized clinical trial. Am. J. Psychiatry 2018; 175: 327–335.
    1. aan het Rot M, Zarate CA Jr, Charney DS, Mathew SJ. Ketamine for depression: Where do we go from here? Biol. Psychiatry 2012; 72: 537–547.
    1. Murrough JW, Perez AM, Pillemer S et al Rapid and longer‐term antidepressant effects of repeated ketamine infusions in treatment‐resistant major depression. Biol. Psychiatry 2013; 74: 250–256.
    1. Singh JB, Fedgchin M, Daly EJ et al A double‐blind, randomized, placebo‐controlled, dose‐frequency study of intravenous ketamine in patients with treatment‐resistant depression. Am. J. Psychiatry 2016; 173: 816–826.
    1. Li L, Vlisides PE. Ketamine: 50 years of modulating the mind. Front. Hum. Neurosci. 2016; 10: 612.
    1. Peltoniemi MA, Hagelberg NM, Olkkola KT, Saari T. Ketamine: A review of clinical pharmacokinetics and pharmacodynamics in anesthesia and pain therapy. Clin. Pharmacokinet. 2016; 55: 1059–1077.
    1. Irwin SA, Iglewicz A, Nelesen RA et al Daily oral ketamine for the treatment of depression and anxiety in patients receiving hospice care: A 28‐day open‐label proof‐of‐concept trial. J. Palliat. Med. 2013; 16: 958–965.
    1. Jafarinia M, Afarideh M, Tafakhori A et al Efficacy and safety of oral ketamine versus diclofenac to alleviate mild to moderate depression in chronic pain patients: A double‐blind, randomized, controlled trial. J. Affect. Disord. 2016; 204: 1–8.
    1. Arabzadeh S, Hakkikazazi E, Shahmansouri N et al Does oral administration of ketamine accelerate response to treatment in major depressive disorder? Results of a double‐blind controlled trial. J. Affect. Disord. 2018; 235: 236–241.
    1. Diazgranados N, Ibrahim L, Brutsche NE et al A randomized add‐on trial of an N‐methyl‐D‐aspartate antagonist in treatment‐resistant bipolar depression. Arch. Gen. Psychiatry 2010; 67: 793–802.
    1. Zarate CA Jr, Brutsche NE, Ibrahim L et al Replication of ketamine's antidepressant efficacy in bipolar depression: A randomized controlled add‐on trial. Biol. Psychiatry 2012; 71: 939–946.
    1. Zheng W, Zhou YL, Liu WJ et al Rapid and longer‐term antidepressant effects of repeated‐dose intravenous ketamine for patients with unipolar and bipolar depression. Psychiatry Res. 2018; 106: 61–68.
    1. Viktorin A, Lichtenstein P, Thase ME et al The risk of switch to mania in patients with bipolar disorder during treatment with an antidepressant alone and in combination with a mood stabilizer. Am. J. Psychiatry 2014; 171: 1067–1073.
    1. Vieta E, Salagre E, Grande I et al Early intervention in bipolar disorder. Am. J. Psychiatry 2018; 175: 411–426.
    1. Niciu MJ, Luckenbaugh DA, Ionescu DF, Mathews DC, Richards EM, Zarate CA Jr. Subanesthetic dose ketamine does not induce an affective switch in three independent samples of treatment‐resistant major depression. Biol. Psychiatry 2013; 74: e23–e24.
    1. Romeo B, Choucha W, Fossati P, Rotge JY. Meta‐analysis of short‐ and mid‐term efficacy of ketamine in unipolar and bipolar depression. Psychiatry Res. 2015; 230: 682–688.
    1. Banwari G, Desai P, Patidar P. Ketamine‐induced affective switch in a patient with treatment‐resistant depression. Indian J. Pharmacol. 2015; 47: 454–455.
    1. McInnes LA, James‐Myers MB, Turner MS. Possible affective switch associated with intravenous ketamine treatment in a patient with bipolar I disorder. Biol. Psychiatry 2016; 79: e71–e72.
    1. Mathisen LC, Skjelbred P, Skoglund LA, Oye I. Effect of ketamine, an NMDA receptor inhibitor, in acute and chronic orofacial pain. Pain 1995; 61: 215–220.
    1. Oye I, Paulsen O, Maurset A. Effects of ketamine on sensory perception: Evidence for a role of N‐methyl‐D‐aspartate receptors. J. Pharmacol. Exp. Ther. 1992; 260: 1209–1213.
    1. Vollenweider FX, Leenders KL, Oye I, Hell D, Angst J. Differential psychopathology and patterns of cerebral glucose utilisation produced by (S)‐ and (R)‐ketamine in healthy volunteers using positron emission tomography (PET). Eur. Neuropsychopharmacol. 1997; 7: 25–38.
    1. Zanos P, Moaddel R, Morris PJ et al Ketamine and ketamine metabolite pharmacology: Insights into therapeutic mechanisms. Pharmacol. Rev. 2018; 70: 621–630.
    1. Reardon S. ‘Party drug’ turned antidepressant approaches approval. Nat. Rev. Drug Discov. 2018; 17: 773–775.
    1. Singh JB, Fedgchin M, Daly E et al Intravenous esketamine in adult treatment‐resistant depression: A double‐blind, double‐randomization, placebo‐controlled study. Biol. Psychiatry 2016; 80: 424–431.
    1. Morrison RL, Fedgchin M, Singh J et al Effect of intranasal esketamine on cognitive functioning in healthy participants: A randomized, double‐blind, placebo‐controlled study. Psychopharmacology 2018; 235: 1107–1119.
    1. Van de Loo AJAE, Bervoets AC, Mooren L et al The effects of intranasal esketamine (84 mg) and oral mirtazapine (30 mg) on on‐road driving performance: A double‐blind, placebo‐controlled study. Psychopharmacology 2017; 234: 3175–3183.
    1. Daly EJ, Singh JB, Fedgchin M et al Efficacy and safety of intranasal esketamine adjunctive to oral antidepressant therapy in treatment‐resistant depression: A randomized clinical trial. JAMA Psychiatry 2018; 75: 139–148.
    1. Canuso CM, Singh JB, Fedgchin M et al Efficacy and safety of intranasal esketamine for the rapid reduction of symptoms of depression and suicidality in patients at imminent risk for suicide: Results of a double‐blind, randomized, placebo‐controlled study. Am. J. Psychiatry 2018; 175: 620–630.
    1. Reardon S. Antidepressant based on party drug gets backing from FDA advisory group. Nature 2019. 10.1038/d41586-019-00559-2
    1. Food and Drug Administration . FDA News Release at March 5, 2019: FDA approves new nasal spray medication for treatment‐resistant depression; available only at a certified doctor's office or clinic. [Cited 30 March 2019]. Available from URL:
    1. Laje G, Lally N, Mathews D et al Brain‐derived neurotrophic factor Val66Met polymorphism and antidepressant efficacy of ketamine in depressed patients. Biol. Psychiatry 2012; 72: e27–e28.
    1. Hashimoto K. A BDNF Val66Met polymorphism and ketamine‐induced rapid antidepressant action. Clin. Psychopharmacol. Neurosci. 2012; 10: 59–60.
    1. Yang JJ, Wang N, Yang C, Shi JY, Yu HY, Hashimoto K. Serum interleukin‐6 is a predictive biomarker for ketamine's antidepressant effect in treatment‐resistant patients with major depression. Biol. Psychiatry 2015; 77: e19–e20.
    1. Chen MH, Li CT, Lin WC et al Rapid inflammation modulation and antidepressant efficacy of a low‐dose ketamine infusion in treatment‐resistant depression: A randomized, double‐blind control study. Psychiatry Res. 2018; 269: 207–211.
    1. Park M, Newman LE, Gold PW et al Change in cytokine levels is not associated with rapid antidepressant response to ketamine in treatment‐resistant depression. J. Psychiatr. Res. 2017; 84: 113–118.
    1. Kiraly DD, Horn SR, Van Dam NT et al Altered peripheral immune profiles in treatment‐resistant depression: Response to ketamine and prediction of treatment outcome. Transl. Psychiatry 2017; 7: e1065.
    1. Hashimoto K. Inflammatory biomarkers as differential predictors of antidepressant response. Int. J. Mol. Sci. 2015; 16: 7796–7801.
    1. Kadriu B, Gold PW, Luckenbaugh DA et al Acute ketamine administration corrects abnormal inflammatory bone markers in major depressive disorder. Mol. Psychiatry 2018; 23: 1626–1631.
    1. Zhang K, Ma M, Dong C, Hashimoto K. Role of inflammatory bone markers in the antidepressant actions of (R)‐ketamine in a chronic social defeat stress model. Int. J. Neuropsychopharmacol. 2018; 21: 1025–1030.
    1. Xiong Z, Fujita Y, Zhang K et al Beneficial effects of (R)‐ketamine, but not its metabolite (2R,6R)‐hydroxynorketamine, in the depression‐like phenotype, inflammatory bone markers, and bone mineral density in a chronic social defeat stress model. Behav. Brain Res. 2019; 368: 111904.
    1. Moaddel R, Shardell M, Khadeer M et al Plasma metabolomic profiling of a ketamine and placebo crossover trial of major depressive disorder and healthy control subjects. Psychopharmacology 2018; 235: 3017–3030.
    1. Shaw AD, Saxena N, Jackson LE, Hall JE, Singh KD, Muthukumaraswamy SD. Ketamine amplifies induced gamma frequency oscillations in the human cerebral cortex. Eur. Neuropsychopharmacol. 2015; 25: 1136–1146.
    1. Nugent AC, Ballard ED, Gould TD et al Ketamine has distinct electrophysiological and behavioral effects in depressed and healthy subjects. Mol. Psychiatry 2018; 24: 1040–1052.
    1. Nugent AC, Wills KE, Gilbert JR, Zarate CA Jr. Synaptic potentiation and rapid antidepressant response to ketamine in treatment‐resistant major depression: A replication study. Psychiatry Res. Neuroimaging 2019; 283: 64–66.
    1. Li SX, Fujita Y, Zhang JC et al Role of the NMDA receptor in cognitive deficits, anxiety and depressive‐like behavior in juvenile and adult mice after neonatal dexamethasone exposure. Neurobiol. Dis. 2014; 62: 124–134.
    1. Li SX, Zhang JC, Wu J, Hashimoto K. Antidepressant effects of ketamine on depression‐like behavior in juvenile mice after neonatal dexamethasone exposure. Clin. Neuropharmacol. Neurosci. 2014; 12: 124–127.
    1. Zhang J, Li S, Hashimoto K. R (−)‐ketamine shows greater potency and longer lasting antidepressant effects than S (+)‐ketamine. Pharmacol. Biochem. Behav. 2014; 116: 137–141.
    1. Yang C, Shirayama Y, Zhang JC et al R‐ketamine: A rapid‐onset and sustained antidepressant without psychotomimetic side effects. Transl. Psychiatry 2015; 5: e632.
    1. Zanos P, Moaddel R, Morris PJ et al NMDAR inhibition‐independent antidepressant actions of ketamine metabolites. Nature 2016; 533: 481–486.
    1. Fukumoto K, Toki H, Iijima M et al Antidepressant potential of (R)‐ketamine in rodent models: Comparison with (S)‐ketamine. J. Pharmacol. Exp. Ther. 2017; 361: 9–16.
    1. Yang B, Ren Q, Ma M, Chen QX, Hashimoto K. Antidepressant effects of (+)‐MK‐801 and (−)‐MK‐801 in the social defeat stress model. Int. J. Neuropsychopharmacol. 2016; 19: pyw080.
    1. Maeng S, Zarate CA Jr, Du J et al Cellular mechanisms underlying the antidepressant effects of ketamine: Role of α‐amino‐3‐hydroxy‐5‐methylisoxazole‐4‐propionic acid receptors. Biol. Psychiatry 2008; 63: 349–352.
    1. Autry AE, Adachi M, Nosyreva E et al NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature 2011; 475: 91–95.
    1. Zhang JC, Yao W, Dong C et al Comparison of ketamine, 7,8‐dihydroxyflavone, and ANA‐12 antidepressant effects in the social defeat stress model of depression. Psychopharmacology 2015; 232: 4325–4335.
    1. Dong C, Zhang JC, Yao W et al Rapid and sustained antidepressant action of the mGlu2/3 receptor antagonist MGS0039 in the social defeat stress model: Comparison with ketamine. Int. J. Neuropsychopharmacol. 2017; 20: 228–236.
    1. Fuchikami M, Thomas A, Liu R et al Optogenetic stimulation of infralimbic PFC reproduces ketamine's rapid and sustained antidepressant actions. Proc. Natl. Acad. Sci. U. S. A. 2015; 112: 8106–8111.
    1. Shirayama Y, Hashimoto K. Effects of a single bilateral infusion of R‐ketamine in the rat brain regions of a learned helplessness model of depression. Eur. Arch. Psychiatry Clin. Neurosci. 2017; 267: 177–182.
    1. Ren Q, Ma M, Yang C, Zhang JC, Yao W, Hashimoto K. BDNF‐TrkB signaling in the nucleus accumbens shell of mice has key role in methamphetamine withdrawal symptoms. Transl. Psychiatry 2015; 5: e666.
    1. Zhang JC, Yao W, Hashimoto K. Brain‐derived neurotrophic factor (BDNF) – TrkB signaling in inflammation‐related depression and potential therapeutic targets. Curr. Neuropharmacol. 2016; 14: 721–731.
    1. Belujon P, Grace AA. Restoring mood balance in depression: Ketamine reverses deficit in dopamine‐dependent synaptic plasticity. Biol. Psychiatry 2014; 76: 927–936.
    1. Yao N, Skiteva O, Zhang X, Svenningsson P, Chergui K. Ketamine and its metabolite (2R,6R)‐hydroxynorketamine induce lasting alterations in glutamatergic synaptic plasticity in the mesolimbic circuit. Mol. Psychiatry 2018; 23: 2066–2077.
    1. Abdallah CG, Jackowski A, Salas R et al The nucleus accumbens and ketamine treatment in major depressive disorder. Neuropsychopharmacology 2017; 42: 1739–1746.
    1. Yang Y, Cui Y, Sang K et al Ketamine blocks bursting in the lateral habenula to rapidly relieve depression. Nature 2018; 554: 317–322.
    1. Cui Y, Hu S, Hu H. Laternal habenular burst firing as a target of the rapid antidepressant effects of ketamine. Trends Neurosci. 2019; 42: 179–191.
    1. Singh I, Morgan C, Curran V, Nutt D, Schlag A, McShane R. Ketamine treatment for depression: Opportunities for clinical innovation and ethical foresight. Lancet Psychiatry 2017; 4: 419–426.
    1. Wilkinson ST, Toprak M, Turner MS, Levine SP, Katz RB, Sanacora G. A survey of the clinical, off‐label use of ketamine as a treatment for psychiatric disorders. Am. J. Psychiatry 2017; 174: 695–696.
    1. Short B, Fong J, Galvez V, Shelker W, Loo CK. Side‐effects associated with ketamine use in depression: A systematic review. Lancet Psychiatry 2018; 5: 65–78.
    1. Ryder S, Way WL, Trevor AJ. Comparative pharmacology of the optical isomers of ketamine in mice. Eur. J. Pharmacol. 1978; 49: 15–23.
    1. Halberstadt AL, Slepak N, Hyun J, Buell MR, Powell SB. The novel ketamine analog methoxetamine produces dissociative‐like behavioral effects in rodents. Psychopharmacology 2016; 233: 1215–1225.
    1. Hashimoto K, Kakiuchi T, Ohba H, Nishiyama S, Tsukada H. Reduction of dopamine D2/3 receptor binding in the striatum after a single administration of esketamine, but not R‐ketamine: A PET study in conscious monkeys. Eur. Arch. Psychiatry Clin. Neurosci. 2017; 267: 173–176.
    1. Olney JW, Labruyere J, Price MT. Pathological changes induced in cerebrocortical neurons by phencyclidine and related drugs. Science 1989; 244: 1360–1362.
    1. Sharp FR, Jasper P, Hall J, Noble L, Sagar SM. MK‐801 and ketamine induce heat shock protein HSP72 in injured neurons in posterior cingulate and retrosplenial cortex. Ann. Neurol. 1991; 30: 801–809.
    1. Hashimoto K, Tomitaka S, Narita N, Minabe Y, Iyo M, Fukui S. Induction of heat shock protein (HSP)‐70 in posterior cingulate and retrosplenial cortex of rat brain by dizocilpine and phencyclidine: Lack of protective effects of sigma receptor ligands. Addict. Biol. 1996; 1: 61–70.
    1. Tomitaka S, Hashimoto K, Narita N, Sakamoto A, Minabe Y, Tamura A. Memantine induces heat shock protein HSP‐70 in the posterior cingulate cortex, retrosplenial cortex and dentate gyrus of rat brain. Brain Res. 1996; 740: 1–5.
    1. Tian Z, Dong C, Fujita A, Fujita Y, Hashimoto K. Expression of heat shock protein HSP‐70 in the retrosplenial cortex of rat brain after administration of (R,S)‐ketamine and (S)‐ketamine, but not (R)‐ketamine. Pharmacol. Biochem. Behav. 2018; 172: 17–21.
    1. Gonzalez‐Burgos G, Cho RY, Lewis DA. Alterations in cortical network oscillations and parvalbumin neurons in schizophrenia. Biol. Psychiatry 2015; 77: 1031–1040.
    1. Yang C, Han M, Zhang JC, Ren Q, Hashimoto K. Loss of parvalbumin‐immunoreactivity in mouse brain regions after repeated intermittent administration of esketamine, but not R‐ketamine. Psychiatric Res. 2016; 239: 281–283.
    1. Chang L, Zhang K, Pu Y et al Comparison of antidepressant and side effects in mice after intranasal administration of (R,S)‐ketamine, (R)‐ketamine, and (S)‐ketamine. Pharmacol. Biochem. Behav. 2019; 181: 53–59.
    1. Hashimoto K. The R‐stereoisomer of ketamine as an alternative for ketamine for treatment‐resistant major depression. Clin. Psychopharmacol. Neurosci. 2014; 12: 72–73.
    1. Hashimoto K. R‐ketamine: A rapid‐onset and sustained antidepressant without risk of brain toxicity. Psychol. Med. 2016; 46: 2449–2451.
    1. Hashimoto K. Ketamine's antidepressant action: Beyond NMDA receptor inhibition. Expert Opin. Ther. Targets 2016; 20: 1389–1392.
    1. Hashimoto K. Detrimental side effects of repeated ketamine infusions in the brain. Am. J. Psychiatry 2016; 173: 1044–1045.
    1. Hashimoto K. Rapid antidepressant activity of ketamine beyond NMDA receptor In: Hashimoto K. (ed.). The NMDA Receptors. Humana Press, New York, NY, 2017; 69–81.
    1. Moaddel R, Venkata SL, Tanga MJ et al A parallel chiral‐achiral liquid chromatographic method for the determination of the stereoisomers of ketamine and ketamine metabolites in the plasma and urine of patients with complex regional pain syndrome. Talanta 2010; 82: 1892–1904.
    1. Zarate CA Jr, Brutsche N, Laje G et al Relationship of ketamine's plasma metabolites with response, diagnosis, and side effects in major depression. Biol. Psychiatry 2012; 72: 331–338.
    1. Chou D, Peng HY, Lin TB et al (2R,6R)‐hydroxynorketamine rescues chronic stress‐induced depression‐like behavior through its actions in the midbrain periaqueductal gray. Neuropharmacology 2018; 139: 1–12.
    1. Pham TH, Defaix C, Xu X et al Common neurotransmission recruited in (R,S)‐ketamine and (2R,6R)‐hydroxynorketamine‐induced sustained antidepressant‐like effects. Biol. Psychiatry 2018; 84: e3–e6.
    1. Fukumoto K, Fogaça MV, Liu RJ et al Activity‐dependent brain‐derived neurotrophic factor signaling is required for the antidepressant actions of (2R,6R)‐hydroxynorketamine. Proc. Natl. Acad. Sci. U. S. A. 2018; 116: 297–302.
    1. Cavalleri L, Merio Pich E, Millan MJ et al Ketamine enhances structural plasticity in mouse mesencephalic and human iPSC‐derived dopaminergic neurons via AMPAR‐driven BDNF and mTOR signaling. Mol. Psychiatry 2018; 23: 812–823.
    1. Collo G, Cavalleri L, Chiamulera C, Merlo Pich E. (2R,6R)‐Hydroxynorketamine promotes dendrite outgrowth in human inducible pluripotent stem cell‐derived neurons through AMPA receptor with timing and exposure compatible with ketamine infusion pharmacokinetics in humans. Neuroreport 2018; 29: 1425–1430.
    1. Wray NH, Schappi JM, Singh H, Senese NB, Rasenick MM. NMDAR‐independent, cAMP‐dependent antidepressant actions of ketamine. Mol. Psychiatry 2018. 10.1038/s41380-018-0083-8
    1. Yang C, Qu Y, Abe M, Nozawa D, Chaki S, Hashimoto K. (R)‐ketamine shows greater potency and longer lasting antidepressant effects than its metabolite (2R,6R)‐hydroxynorketamine. Biol. Psychiatry 2017; 82: e43–e44.
    1. Shirayama Y, Hashimoto K. Lack of antidepressant effects of (2R,6R)‐hydroxynorketamine in a rat learned helplessness model: Comparison with (R)‐ketamine. Int. J. Neuropsychopharmacol. 2018; 21: 84–88.
    1. Zhang K, Fujita Y, Hashimoto K. Lack of metabolism in (R)‐ketamine's antidepressant actions in a chronic social defeat stress model. Sci. Rep. 2018; 8: 4007.
    1. Zhang K, Toki H, Fujita Y et al Lack of deuterium isotope effects in the antidepressant effects of (R)‐ketamine in a chronic social defeat stress model. Psychopharmacology 2018; 235: 3177–3185.
    1. Yamaguchi JI, Toki H, Qu Y et al (2R,6R)‐Hydroxynorketamine is not essential for the antidepressant actions of (R)‐ketamine in mice. Neuropsychopharmacology 2018; 43: 1900–1907.
    1. Chang L, Toki H, Qu Y et al No sex‐specific differences in the acute antidepressant actions of (R)‐ketamine in an inflammation model. Int. J. Neuropsychopharmacol. 2018; 21: 932–937.
    1. Zanos P, Highland JH, Liu X et al (R)‐ketamine exerts antidepressant actions partly via conversion to (2R,6R)‐hydroxynorketamine, while causing adverse effects at sub‐anaesthetic doses. Br. J. Pharmacol 2019; 176: 2573–2592.
    1. Hashimoto K, Shirayama Y. What are the causes for discrepancies of antidepressant actions of (2R,6R)‐hydroxynorketamine? Biol. Psychiatry 2018; 84: e7–e8.
    1. Chaki S. Is metabolism of (R)‐ketamine essential for the antidepressant effects? Int. J. Neuropsychopharmacol. 2018; 21: 154–156.
    1. Chaki S, Yamaguchi JI. Now is the time for (2R,6R)‐hydroxynorketamine to be viewed independently from its parent drug. Pharmacol. Biochem. Behav. 2018; 175: 24–26.
    1. Chaki S, Yamaguchi JI. Is the history repeated? Can (2R,6R)‐hydroxynorketamine be another antidepressant? J. Exp. Neurosci. 2018. 10.1177/1179069518815445
    1. Highland JN, Morris PJ, Zanos P et al Mouse, rat, and dog bioavailability and mouse oral antidepressant efficacy of (2R,6R)‐hydroxynorketamine. J. Psychopharmacol. 2018; 33: 12–24.
    1. Yang C, Hashimoto K. Rapid antidepressant effects and abuse liability of ketamine. Psychopharmacology 2014; 231: 2041–2042.
    1. Yang C, Kobayashi S, Nakao K et al AMPA receptor activation‐independent antidepressant actions of ketamine metabolite (S)‐norketamine. Biol. Psychiatry 2018; 84: 591–600.
    1. Hashimoto K, Yang C. Is (S)‐norketamine an alternative antidepressant for esketamine? Eur. Arch. Psychiatry Clin. Neurosci. 2018. 10.1007/s00406-018-0922-2
    1. Parsons CG, Danysz W, Quack G. Memantine is a clinical well tolerated N–methyl‐D‐aspartate (NMDA) receptor antagonist—A review of preclinical data. Neuropharmacology 1999; 38: 735–767.
    1. Zarate CA Jr, Singh JB, Quiroz JA et al A double‐blind, placebo‐controlled study of memantine in the treatment of major depression. Am. J. Psychiatry 2006; 463: 153–155.
    1. Gideons ES, Kavalali ET, Monteggia LM. Mechanisms underlying differential effectiveness of memantine and ketamine in rapid antidepressant responses. Proc. Natl. Acad. Sci. U. S. A. 2014; 111: 8649–8654.
    1. Zarate CA Jr, Mathews D, Ibrahim L et al A randomized trial of a low‐trapping nonselective N‐methyl‐D‐aspartate channel blocker in major depression. Biol. Psychiatry 2013; 74: 257–264.
    1. Sanacora G, Smith MA, Pathak S et al Lanicemine: A low‐trapping NMDA channel blocker produces sustained antidepressant efficacy with minimal psychotomimetic adverse effects. Mol. Psychiatry 2014; 19: 978–985.
    1. Sanacora G, Johnson MR, Khan A et al Adjunctive lanicemine (AZD6765) in patients with major depressive disorder and history of inadequate response to antidepressants: A randomized, placebo‐controlled study. Neuropsychopharmacology 2017; 42: 844–853.
    1. Abdallah CG, Dutta A, Averill CL et al Ketamine, but not the NMDAR antagonist lanicemine, increases prefrontal global connectivity in depressed patients. Chronic Stress 2018. 10.1177/2470547018796102
    1. Qu Y, Yang C, Ren Q, Ma M, Dong C, Hashimoto K. Comparison of (R)‐ketamine and lanicemine on depression‐like phenotype and abnormal composition of gut microbiota in a social defeat stress model. Sci. Rep. 2017; 7: 15725.
    1. Burgdorf J, Zhang XL, Nicholson KL et al GLYX‐13, a NMDA receptor glycine‐site functional partial agonist, induces antidepressant‐like effects without ketamine‐like side effects. Neuropsychopharmacology 2013; 38: 729–742.
    1. Moskal JR, Burgdorf JS, Stanton PK et al The development of rapastinel (formerly GLYX‐13); a rapid acting and long lasting antidepressant. Curr. Neuropharmacol. 2017; 15: 47–56.
    1. Liu RJ, Duman C, Kato T et al GLYX‐13 produces rapid antidepressant responses with key synaptic and behavioral effects distinct from ketamine. Neuropsychopharmacology 2017; 42: 1231–1242.
    1. Donello JE, Banerjee P, Li YX et al Positive N‐methyl‐D‐aspartate receptor modulation by rapastinel promotes rapid and sustained antidepressant‐like effects. Int. J. Neuropsychopharmacol. 2019; 22: 247–259.
    1. Yang B, Zhang JC, Han M et al Comparison of R‐ketamine and rapastinel antidepressant effects in the social defeat stress model of depression. Psychopharmacology 2016; 233: 3647–3657.
    1. Preskorn S, Macaluso M, Mehra DO et al Randomized proof of concept trial of GLYX‐13, an N‐methyl‐D‐aspartate receptor glycine site partial agonist, in major depressive disorder nonresponsive to a previous antidepressant agent. J. Psychiatr. Pract. 2015; 21: 140–149.
    1. Allergan . Allergan announces phase 3 results for rapastinel as an adjunctive treatment of major depressive disorder (MDD). [Cited 30 March 2019]. Available from URL:
    1. Donello J, Li YX, Banerjee P et al. AGN‐241751, an orally bioavailable positive NMDA receptor modulator, exhibits rapid and sustained antidepressant‐like effects in rodents. Poster M124 presented at the 57th Annual Meeting of the American College of Neuropsychopharmacology (ACNP); December 9–13, 2018; Hollywood, FL.
    1. Wilkinson ST, Sanacora G. A new generation of antidepressants: An update on the pharmaceutical pipeline for novel and rapid‐acting therapeutics in mood disorders based on glutamate/GABA neurotransmitter systems. Drug Discov. Today 2018; 24: 606–615.
    1. Tian Z, Dong C, Zhang K, Chang L, Hashimoto K. Lack of antidepressant effects of low‐voltage‐sensitive T‐type calcium channel blocker ethosuximide in a chronic social defeat stress model: Comparison with (R)‐ketamine. Int. J. Neuropsychopharmacol. 2018; 21: 1031–1036.
    1. Ohno Y. Astrocytic Kir4.1 potassium channels as a novel therapeutic target for epilepsy and mood disorders. Neural. Regen. Res. 2018; 13: 651–652.
    1. Cui Y, Yang Y, Ni Z et al Astroglial Kir4.1 in the lateral habenula drives neuronal bursts in depression. Nature 2018; 554: 323–327.
    1. Xiong Z, Zhang K, Ren Q, Chang L, Chen J, Hashimoto K. Increased expression of inwardly rectifying Kir4.1 channel in the parietal cortex from patients with major depressive disorder. J. Affect. Disord. 2018; 245: 265–269.
    1. Xiong Z, Zhang K, Ishima T et al Lack of rapid antidepressant effects of Kir4.1 channel inhibitors in a chronic social defeat stress model: Comparison with (R)‐ketamine. Pharmacol. Biochem. Behav. 2018; 176: 57–62.
    1. Luscher B, Shen Q, Sahir N. The GABAergic deficit hypothesis of major depressive disorder. Mol. Psychiatry 2011; 16: 383–406.
    1. Rudolph U, Knoflach F. Beyond classical benzodiazepines: Novel therapeutic potential of GABAA receptor subtypes. Nat. Rev. Drug Discov. 2011; 10: 685–697.
    1. Fischell J, Van Dyke AM, Kvarta MD, LeGates TA, Thompson SM. Rapid antidepressant action and restoration of excitatory synaptic strength after chronic stress by negative modulators of alpha5‐containing GABAA receptors. Neuropsychopharmacology 2015; 40: 2499–2509.
    1. Zanos P, Nelson ME, Highland JN et al A negative allosteric modulator for α5 subunit‐containing GABA receptors exerts a rapid and persistent antidepressant‐like action without the side effects of the NMDA receptor antagonist ketamine in mice. eNeuro 2017. 10.1523/ENEURO.0285-16.2017
    1. Carreno FR, Collins GT, Frazer A, Lodge DJ. Selective pharmacological augmentation of hippocampal activity produces a sustained antidepressant‐like response without abuse‐related or psychotomimetic effects. Int. J. Neuropsychopharmacol. 2017; 20: 504–509.
    1. Xu NZ, Ernst M, Treven M et al Negative allosteric modulation of alpha 5‐containing GABAA receptors engenders antidepressant‐like effects and selectively prevents age‐associated hyperactivity in tau‐depositing mice. Psychopharmacology 2018; 235: 1151–1161.
    1. Xiong Z, Zhang K, Ishima T et al Comparison of rapid and long‐lasting antidepressant effects of negative modulators of α5‐containing GABAA receptors and (R)‐ketamine in a chronic social defeat stress model. Pharmacol. Biochem. Behav. 2018; 175: 139–145.
    1. Duman RS, Aghajanian GK. Synaptic dysfunction in depression: Potential therapeutic targets. Science 2012; 338: 68–72.
    1. Murrough JW, Abdallah CG, Mathew SJ. Targeting glutamate signalling in depression: Progress and prospects. Nat. Rev. Drug Discov. 2017; 16: 472–486.
    1. Abdallah CG, Sanacora G, Duman RS, Krystal JH. The neurobiology of depression, ketamine and rapid‐acting antidepressants: Is it glutamate inhibition or activation? Pharmacol. Ther. 2018; 190: 148–158.
    1. Gerhard DM, Duman RS. Rapid‐acting antidepressants: Mechanistic insights and future directions. Curr. Behav. Neurosci. Rep. 2018; 5: 36–47.
    1. Witkin JM, Knutson DE, Rodriguez GJ, Shi S. Rapid‐acting antidepressants. Curr. Pharm. Des. 2018; 24: 2556–2563.
    1. Pałucha‐Poniewiera A. The role of glutamatergic modulation in the mechanism of action of ketamine, a prototype rapid‐acting antidepressant drug. Pharmacol. Rep. 2018; 70: 837–846.
    1. Gould TD, Zarate CA Jr, Thompson SM. Molecular pharmacology and neurobiology of rapid‐acting antidepressants. Annu. Rev. Pharmacol. Toxicol. 2019; 59: 213–236.
    1. Moghaddam B, Adams B, Verma A, Daly D. Activation of glutamatergic neurotransmission by ketamine: A novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. J. Neurosci. 1997; 17: 2921–2927.
    1. Li N, Lee B, Liu RJ et al mTOR‐dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 2010; 329: 959–964.
    1. Walker AK, Budac DP, Bisulco S et al NMDA receptor blockade by ketamine abrogates lipopolysaccharide‐induced depressive‐like behavior in C57BL/6J mice. Neuropsychopharmacology 2013; 38: 1609–1616.
    1. Koike H, Iijima M, Chaki S. Involvement of AMPA receptor in both the rapid and sustained antidepressant‐like effects of ketamine in animal models of depression. Behav. Brain Res. 2011; 224: 107–111.
    1. Zhou W, Wang N, Yang C, Li XM, Zhou ZQ, Yang JJ. Ketamine‐induced antidepressant effects are associated with AMPA receptors‐mediated upregulation of mTOR and BDNF in rat hippocampus and prefrontal cortex. Eur. Psychiatry 2014; 29: 419–423.
    1. Fukumoto K, Iijima M, Chaki S. The antidepressant effects of an mGlu2/3 receptor antagonist and ketamine require AMPA receptor stimulation in the mPFC and subsequent activation of the 5‐HT neurons in the DRN. Neuropsychopharmacology 2016; 41: 1046–1056.
    1. Hashimoto K. Role of the mTOR signaling pathway in the rapid antidepressant action of ketamine. Expert Rev. Neurother. 2011; 11: 33–36.
    1. Koike H, Iijima M, Chaki S. Involvement of the mammalian target of rapamycin signaling in the antidepressant‐like effect of group II metabotropic glutamate receptor antagonists. Neuropharmacology 2011; 61: 1419–1423.
    1. Yang C, Hu YM, Zhou ZQ, Zhang GF, Yang JJ. Acute administration of ketamine in rats increases hippocampal BDNF and mTOR levels during forced swimming test. Ups. J. Med. Sci. 2013; 118: 3–8.
    1. Sato A, Kasai S, Kobayashi T et al Rapamycin reverses impaired social interaction in mouse models of tuberous sclerosis complex. Nat. Commun. 2012; 3: 1292.
    1. Yang C, Ren Q, Qu Y et al Mechanistic target of rapamycin‐independent antidepressant effects of (R)‐ketamine in a social defeat stress model. Biol. Psychiatry 2018; 83: 18–28.
    1. Denk MC, Rewerts C, Holsboer F, Erhardt‐Lehmann A, Turck CW. Monitoring ketamine treatment response in a depressed patient via peripheral mammalian target of rapamycin activation. Am. J. Psychiatry 2011; 168: 751–752.
    1. Yang C, Zhou Z, Gao Z, Shi JY, Yang JJ. Acute increases in plasma mammalian target of rapamycin, glycogen synthase kinase‐3β, and eukaryotic elongation factor 2 phosphorylation after ketamine treatment in three depressed patients. Biol. Psychiatry 2013; 73: e35–e36.
    1. Abdallah CG, Averill LA, Gueorguieva R et al Rapamycin, an immunosuppressant and mTORC1 inhibitor, triples the antidepressant response rate of ketamine at 2 weeks following treatment. A double‐blind, placebo‐controlled, cross‐over, randomized clinical trial. bioRxiv 2018. 10.1101/500959
    1. Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ, Gold SJ, Monteggia LM. Neurobiology of depression. Neuron 2002; 34: 13–25.
    1. Hashimoto K, Shimizu E, Iyo M. Critical role of brain‐derived neurotrophic factor in mood disorders. Brain Res. Rev. 2004; 45: 104–114.
    1. Duman RS, Monteggia LM. A neurotrophic model for stress‐related mood disorders. Biol. Psychiatry 2006; 59: 1116–1127.
    1. Hashimoto K. Brain‐derived neurotrophic factor as a biomarker for mood disorders: An historical overview and future directions. Psychiatry Clin. Neurosci. 2010; 64: 341–357.
    1. Lepack AE, Fuchikami M, Dwyer JM, Banasr M, Duman RS. BDNF release is required for the behavioral actions of ketamine. Int. J. Neuropsychopharmacol. 2014; 18: pyu033.
    1. Liu WX, Wang J, Xie ZM et al Regulation of glutamate transporter 1 via BDNF‐TrkB signaling plays a role in the anti‐apoptotic and antidepressant effects of ketamine in chronic unpredictable stress model of depression. Psychopharmacology 2016; 233: 405–415.
    1. Clark‐Raymond A, Halaris A. VEGF and depression: A comprehensive assessment of clinical data. J. Psychiatr. Res. 2013; 47: 1080–1087.
    1. Pisoni A, Strawbridge R, Hodsoll J et al Growth factor proteins and treatment‐resistant depression: A place on the path to precision. Front. Psych. 2018; 9: 386.
    1. Choi M, Lee SH, Chang HL, Son H. Hippocampal VEGF is necessary for antidepressant‐like behaviors but not sufficient for antidepressant‐like effects of ketamine in rats. Biochim. Biophys. Acta 1862; 2016: 1247–1254.
    1. Deyama S, Bang E, Wohleb ES et al Role of neuronal VEGF signaling in the prefrontal cortex in the rapid antidepressant effects of ketamine. Am. J. Psychiatry 2019; 176: 388–400.
    1. Deyama S, Bang E, Kato T, Yuan X, Duman RS. Neurotrophic and antidepressant actions of brain‐derived neurotrophic factor require vascular endothelial growth factor. Biol. Psychiatry 2018; 141: 10–16.
    1. Zhang K, Xu T, Yuan Z et al Essential roles of AMPA receptor GluA1 phosphorylation and presynaptic HCN channels in fast‐acting antidepressant responses of ketamine. Sci. Signal. 2016; 9: ra123.
    1. Kim CS, Brager DH, Johnston D. Perisomatic changes in h‐channels regulate depressive behaviors following chronic unpredictable stress. Mol. Psychiatry 2017; 23: 892–903.
    1. Zhu Y, Stanly MR, Ku S et al HCN channel inhibitor induces a rapid and sustained reversal of social deficit in a chronic social defeat stress model of depression. Poster M123 presented at the 57th Annual Meeting of the American College of Neuropsychopharmacology (ACNP); December 9–13, 2018; Hollywood, FL.
    1. Beurel E, Song L, Jope RS. Inhibition of glycogen synthase kinase‐3 is necessary for the rapid antidepressant effect of ketamine in mice. Mol. Psychiatry 2011; 16: 1068–1070.
    1. Liu RJ, Fuchikami M, Dwyer JM, Lepack AE, Duman RS, Aghajanian GK. GSK‐3 inhibition potentiates the synaptogenic and antidepressant‐like effects of subthreshold doses of ketamine. Neuropsychopharmacology 2013; 38: 2268–2277.
    1. Chiu CT, Scheuing L, Liu G et al The mood stabilizer lithium potentiates the antidepressant‐like effects and ameliorates oxidative stress induced by acute ketamine in a mouse model of stress. Int. J. Neuropsychopharmacol. 2014; 18: pyu102.
    1. Ma XC, Dang YH, Jia M et al Long‐lasting antidepressant action of ketamine, but not glycogen synthase kinase‐3 inhibitor SB216763, in the chronic mild stress model of mice. PLoS One 2013; 8: e56053.
    1. Svenningsson P, Chergui K, Rachleff I et al Alterations in 5‐HT1B receptor function by p11 in depression‐like states. Science 2006; 311: 77–80.
    1. Svenningsson P, Kim Y, Warner‐Schmidt J, Oh YS, Greengard P. p11 and its role in depression and therapeutic responses to antidepressants. Nat. Rev. Neurosci. 2013; 14: 673–680.
    1. Sun HL, Zhou ZQ, Zhang GF et al Role of hippocampal p11 in the sustained antidepressant effect of ketamine in the chronic unpredictable mild stress model. Transl. Psychiatry 2016; 6: e741.
    1. Hirota K, Lambert DG. Ketamine: Its mechanism(s) of action and unusual clinical uses. Br. J. Anesth. 1996; 77: 441–444.
    1. Kohrs R, Durieux ME. Ketamine: Teaching an old drug new tricks. Anesth. Analg. 1998; 87: 1186–1193.
    1. Williams NR, Heifets BD, Blasey C et al Attenuation of antidepressant effects of ketamine by opioid receptor antagonisms. Am. J. Psychiatry 2018; 175: 1205–1215.
    1. Sanacora G. Caution against overinterpreting opiate receptor stimulation as mediating antidepressant effects of ketamine. Am. J. Psychiatry 2019; 176: 249.
    1. Heifets BD, Williams NR, Blasey C, Sudheimer K, Rodriguez CI, Schatzberg AF. Interpreting ketamine's opioid receptor dependent effect: Response to Sanacora. Am. J. Psychiatry 2019; 176: 249–250.
    1. Amiaz R. Attenuation of antidepressant effects of ketamine by opioid receptor antagonism: Is it a ketamine‐specific effect? Am. J. Psychiatry 2019; 176: 250–251.
    1. Heifets BD, Williams NR, Blasey C, Sudheimer K, Rodriguez CI, Schatzberg AF. Target population, dose, and timing considerations for understanding naltrexone's subjective effect: Response to Amiaz. Am. J. Psychiatry 2019; 176: 251–252.
    1. Wang M, Kaplin A. Explaining naltrexone's interference with ketamine's antidepressant effect. Am. J. Psychiatry 2019; 176: 410–411.
    1. Yoon G, Petrakis IL, Krystal JH. Association of combined naltrexone and ketamine with depressive symptoms in a case series of patients with depression and alcohol use disorder. JAMA Psychiatry 2019; 76: 337–338.
    1. Heifets BD, Williams NR, Bentzley BS, Schatzberg AF. Rigorous trial design is essential to understand the role of opioid receptors in ketamine's antidepressant effect. JAMA Psychiatry 2019; 76: 657.
    1. Krystal JH, Yoon G, Petrakis IL. Rigorous trial design is essential to understand the role of opioid receptors in ketamine's antidepressant effect—Reply. JAMA Psychiatry 2019; 76: 658.
    1. Zhang K, Hashimoto K. Lack of opioid system in the antidepressant actions of ketamine. Biol. Psychiatry 2018; 85: e25–e27.
    1. O'Connor RM, Grenham S, Dinan TG, Cryan JF. microRNAs as novel antidepressant targets: Converging effects of ketamine and electroconvulsive shock therapy in the rat hippocampus. Int. J. Neuropsychopharmacol 2013; 16: 1885–1892.
    1. Yang X, Yang Q, Wang X et al MicroRNA expression profile and functional analysis reveal that miR‐206 is a critical novel gene for the expression of BDNF induced by ketamine. Neuromolecular Med. 2014; 16: 594–605.
    1. Grieco SF, Velmeshev D, Magistri M et al Ketamine up‐regulates a cluster of intronic miRNAs within the serotonin receptor 2C gene by inhibiting glycogen synthase kinase‐3. World J. Biol. Psychiatry 2017; 18: 445–456.
    1. Wan YQ, Feng JG, Li M et al Prefrontal cortex miR‐29b‐3p plays a key role in the antidepressant‐like effect of ketamine in rats. Exp. Mol. Med. 2018; 50: 140.
    1. Jiang H, Ling Z, Zhang Y et al Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav. Immun. 2015; 48: 186–194.
    1. Wong ML, Inserra A, Lewis MD et al Inflammasome signaling affects anxiety‐ and depressive‐like behavior and gut microbiome composition. Mol. Psychiatry 2016; 21: 797–805.
    1. Zheng P, Zeng B, Zhou C et al Gut microbiome remodeling induces depressive‐like behaviors through a pathway mediated by the host's metabolism. Mol. Psychiatry 2016; 21: 786–796.
    1. Burokas A, Arboleya S, Moloney RD et al Targeting the microbiota‐gut‐brain axis: Prebiotics have anxiolytic and antidepressant‐like effects and reverse the impact of chronic stress in mice. Biol. Psychiatry 2017; 82: 472–487.
    1. Ho P, Ross DA. More than a gut feeling: The implications of the gut microbiota in psychiatry. Biol. Psychiatry 2017; 81: e35–e37.
    1. Yang C, Fujita Y, Ren Q, Ma M, Dong C, Hashimoto K. Bifidobacterium in the gut microbiota confer resilience to chronic social defeat stress in mice. Sci. Rep. 2017; 7: 45942.
    1. Zhang JC, Yao W, Dong C et al Blockade of interleukin‐6 receptor in the periphery promotes rapid and sustained antidepressant actions: A possible role of gut‐microbiota‐brain axis. Transl. Psychiatry 2017; 7: e1138.
    1. Macedo D, Filho AJ, Soares de Sousa CN et al Antidepressants, antimicrobials or both? Gut microbiota dysbiosis in depression and possible implications of the antimicrobial effects of antidepressant drugs for antidepressant effectiveness. J. Affect. Disord. 2017; 208: 22–32.
    1. Yang C, Fang X, Zhan G et al Key role of gut microbiota in anhedonia‐like phenotype in rodents with neuropathic pain. Transl. Psychiatry 2019; 9: 57.
    1. Yang C, Qu Y, Fujita Y et al Possible role of gut‐microbiota in the antidepressant effects of (R)‐ketamine in a social defeat stress model. Transl. Psychiatry 2017; 7: 1294.
    1. Huang N, Hua D, Zhan G et al Role of Actinobacteria and Coriobacteriia in the antidepressant effects of ketamine in an inflammation model of depression. Pharmacol. Biochem. Behav. 2018; 176: 93–100.
    1. Getachew B, Aubee JI, Schottenfeld RS, Csoka AB, Thompson KM, Tizabi Y. Ketamine interactions with gut‐microbiota in rats: Relevance to its antidepressant and anti‐inflammatory properties. BMC Microbiol. 2018; 18: 222.
    1. Krystal JH, Abdallah CG, Sanacora G, Charney DS, Duman RS. Ketamine: A paradigm shift for depression research and treatment. Neuron 2019; 101: 774–778.
    1. Pushpakom S, Iorio F, Eyers PA et al Drug repurposing: Progress, challenges and recommendations. Nat. Rev. Drug Discov. 2019; 18: 41–58.

Source: PubMed

3
Prenumerera