Plasma Kallikrein-Activated TGF-β Is Prognostic for Poor Overall Survival in Patients with Pancreatic Ductal Adenocarcinoma and Associates with Increased Fibrogenesis

Rasmus S Pedersen, Neel I Nissen, Christina Jensen, Jeppe Thorlacius-Ussing, Tina Manon-Jensen, Majken L Olesen, Lasse L Langholm, Hadi M H Diab, Lars N Jorgensen, Carsten P Hansen, Inna M Chen, Julia S Johansen, Morten A Karsdal, Nicholas Willumsen, Rasmus S Pedersen, Neel I Nissen, Christina Jensen, Jeppe Thorlacius-Ussing, Tina Manon-Jensen, Majken L Olesen, Lasse L Langholm, Hadi M H Diab, Lars N Jorgensen, Carsten P Hansen, Inna M Chen, Julia S Johansen, Morten A Karsdal, Nicholas Willumsen

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is a hard-to-treat cancer due to the collagen-rich (fibrotic) and immune-suppressed microenvironment. A major driver of this phenomenon is transforming growth factor beta (TGF-β). TGF-β is produced in an inactive complex with a latency-associated protein (LAP) that can be cleaved by plasma kallikrein (PLK), hereby releasing active TGF-β. The aim of this study was to evaluate LAP cleaved by PLK as a non-invasive biomarker for PDAC and tumor fibrosis. An ELISA was developed for the quantification of PLK-cleaved LAP-TGF-β in the serum of 34 patients with PDAC (stage 1−4) and 20 healthy individuals. Biomarker levels were correlated with overall survival (OS) and compared to serum type III collagen (PRO-C3) and type VI collagen (PRO-C6) pro-peptides. PLK-cleaved LAP-TGF-β was higher in patients with PDAC compared to healthy individuals (p < 0.0001). High levels (>median) of PLK-cleaved LAP-TGF-β were associated with poor OS in patients with PDAC independent of age and stage (HR 2.57, 95% CI: 1.22−5.44, p = 0.0135). High levels of PLK-cleaved LAP-TGF-β were associated with high PRO-C3 and PRO-C6, indicating a relationship between the PLK-cleaved LAP-TGF-β fragment, TGF-β activity, and tumor fibrosis. If these preliminary results are validated, circulating PLK-cleaved LAP-TGF-β may be a biomarker for future clinical trials.

Trial registration: ClinicalTrials.gov NCT03311776.

Keywords: ECM remodeling; LAP-TGF-β; PDAC; TGF-β; TGF-β activation; plasma kallikrein; serum biomarker; tumor fibrosis; tumor microenvironment.

Conflict of interest statement

R.S.P., H.M.H.D., L.N.J., C.P.H., I.M.C. and J.S.J. have no conflict of interest to declare. N.I.N., C.J., J.T.-U., T.M.-J., M.L.O., L.L.L., M.A.K. and N.W. are employed at Nordic Bioscience, and are involved in the discovery and development of serological biomarkers. T.M.-J., M.A.K., L.L.L. and N.W. own stocks in Nordic Bioscience.

Figures

Figure 1
Figure 1
Illustration of plasma kallikrein (PLK)-mediated TGF-β activation: TGF-β in its latent state in complex with latency-associated peptide (LAP) (LAP-TGF-β) is bound to the extracellular matrix (ECM) via latent TGF-β binding protein (LTBP). PLK cleaves LAP between R58 and L59, resulting in the release of active TGF-β and the PLK-cleaved LAP-TGF-β fragment. The active TGF-β will induce multiple biological functions, including tumor progression, metastasis, and collagen formation, leading to tumor fibrosis. The PLK-cleaved LAP-TGF-β fragment is released into circulation, and as a result, becomes detectable in serum and plasma samples through antibody binding.
Figure 2
Figure 2
Assay specificity towards PLK-cleaved LAP-TGF-β: (a) Inhibition curve for the selection peptide (LASPPSQGEV), elongated peptide (RLASPPSQGEV), truncated peptide (ASPPSQGEV), non-sense selection peptide (PNASPLLGS), and a non-sense coater peptide (YPNASPLLGS-K-(Biotin)). The peptides were diluted in 2-fold dilution series starting from 25 ng/mL. (b) PLK-cleaved LAP-TGF-β measured after one hour incubation of LAP-TGF-β with or without kallikrein.
Figure 3
Figure 3
Biomarker levels of PLK-cleaved LAP-TGF-β in matched serum and citrate plasma samples: (a) Matched samples are connected by lines. (b) Correlation between the serum and plasma PLK-cleaved LAP-TGF-β levels shown in (a) was tested with Pearson test; Pearson’s r (r) and p-values are shown. The line represents simple linear regression.
Figure 4
Figure 4
Diagnostic potential of PLK-cleaved LAP-TGF-β: (a) Serum levels of PLK-cleaved LAP-TGF-β in healthy individuals (n = 20) and patients with PDAC (n = 34). Black lines indicate median values. Patients in stages 1, 2, 3, and 4 have shape and color codes being green square, purple diamonds, light blue triangles, and orange circles, respectively. (b) Receiver operating characteristic curve for the patients and healthy individual mentioned in (a), area under curve (AUC).
Figure 5
Figure 5
Prognostic properties of PLK-cleaved LAP-TGF-β: Kaplan-Meier survival curves showing the association between serum PLK-cleaved LAP-TGF-β levels (dichotomized into low (median (orange curve)), and overall survival for patients with PDAC. Median survival and log-rank test are shown.
Figure 6
Figure 6
PLK-cleaved LAP-TGF-β levels associate with collagen formation: Biomarker levels of PRO-C3 (a) and PRO-C6 (b) from patients with PDAC dichotomized into low PLK-cleaved LAP-TGF-β levels (<median, n = 17) and high PLK-cleaved LAP-TGF-β levels (>median, n = 17). The groups were compared using Mann-Whitney test; p-value is shown.

References

    1. Siegel R.L., Miller K.D., Fuchs H.E., Jemal A. Cancer Statistics, 2022. CA. Cancer J. Clin. 2022;72:7–33. doi: 10.3322/caac.21708.
    1. Mattiuzzi C., Lippi G. Current Cancer Epidemiology. J. Epidemiol. Glob. Health. 2019;9:217–222. doi: 10.2991/jegh.k.191008.001.
    1. Bulle A., Lim K.H. Beyond Just a Tight Fortress: Contribution of Stroma to Epithelial-Mesenchymal Transition in Pancreatic Cancer. Signal Transduct. Target. Ther. 2020;5:1–12. doi: 10.1038/s41392-020-00341-1.
    1. Willumsen N., Jensen C., Green G., Nissen N.I., Neely J., Nelson D.M., Pedersen R.S., Frederiksen P., Chen I.M., Boisen M.K., et al. Fibrotic Activity Quantified in Serum by Measurements of Type III Collagen Pro-Peptides Can Be Used for Prognosis across Different Solid Tumor Types. Cell. Mol. Life Sci. 2022;79:204. doi: 10.1007/s00018-022-04226-0.
    1. Feig C., Gopinathan A., Neesse A., Chan D.S., Cook N., Tuveson D. a The Pancreas Cancer Microenvironment. Clin. Cancer Res. 2012;18:4266–4276. doi: 10.1158/1078-0432.CCR-11-3114.
    1. Nissen N.I., Johansen A.Z., Chen I., Johansen J.S., Pedersen R.S., Hansen C.P., Karsdal M.A., Willumsen N. Collagen Biomarkers Quantify Fibroblast Activity In Vitro and Predict Survival in Patients with Pancreatic Ductal Adenocarcinoma. Cancers. 2022;14:819. doi: 10.3390/cancers14030819.
    1. Chen X., Song E. Turning Foes to Friends: Targeting Cancer-Associated Fibroblasts. Nat. Rev. Drug Discov. 2019;18:99–115. doi: 10.1038/s41573-018-0004-1.
    1. Meng X., Nikolic-Paterson D.J., Lan H.Y. TGF-β: The Master Regulator of Fibrosis. Nat. Rev. Nephrol. 2016;12:325–338. doi: 10.1038/nrneph.2016.48.
    1. Rice L.M., Padilla C.M., McLaughlin S.R., Mathes A., Ziemek J., Goummih S., Nakerakanti S., York M., Farina G., Whitfield M.L., et al. Fresolimumab Treatment Decreases Biomarkers and Improves Clinical Symptoms in Systemic Sclerosis Patients. J. Clin. Investig. 2015;125:2795–2807. doi: 10.1172/JCI77958.
    1. Schwabe R.F., Tabas I., Pajvani U.B. Mechanisms of Fibrosis Development in Nonalcoholic Steatohepatitis. Gastroenterology. 2020;158:1913–1928. doi: 10.1053/j.gastro.2019.11.311.
    1. Yamamoto T., Noble N.A., Miller D.E., Border W.A. Sustained Expression of TGF-Β1 Underlies Development of Progressive Kidney Fibrosis. Kidney Int. 1994;45:916–927. doi: 10.1038/ki.1994.122.
    1. Principe D.R., Timbers K.E., Atia L.G., Koch R.M., Rana A. TGFβ Signaling in the Pancreatic Tumor Microenvironment. Cancers. 2021;13:5086. doi: 10.3390/cancers13205086.
    1. Seoane J., Gomis R.R. TGF-β Family Signaling in Tumor Suppression and Cancer Progression. Cold Spring Harb. Perspect. Biol. 2017;9:a022277. doi: 10.1101/cshperspect.a022277.
    1. Ueshima E., Fujimori M., Kodama H., Felsen D., Chen J., Durack J.C., Solomon S.B., Coleman J.A., Srimathveeravalli G. Macrophage-Secreted TGF-β 1 Contributes to Fibroblast Activation and Ureteral Stricture after Ablation Injury. Am. J. Physiol. Physiol. 2019;317:F52–F64. doi: 10.1152/ajprenal.00260.2018.
    1. Acerbi I., Cassereau L., Dean I., Shi Q., Au A., Park C., Chen Y.Y., Liphardt J., Hwang E.S., Weaver V.M. Human Breast Cancer Invasion and Aggression Correlates with ECM Stiffening and Immune Cell Infiltration. Integr. Biol. 2015;7:1120–1134. doi: 10.1039/c5ib00040h.
    1. Nagaraj N.S., Datta P.K. Targeting the Transforming Growth Factor-β Signaling Pathway in Human Cancer. Expert Opin. Investig. Drugs. 2010;19:77–91. doi: 10.1517/13543780903382609.
    1. Assoian R.K., Komoriya A., Meyers C.A., Miller D.M., Sporn M.B. Transforming Growth Factor-Beta in Human Platelets. Identification of a Major Storage Site, Purification, and Characterization. J. Biol. Chem. 1983;258:7155–7160. doi: 10.1016/S0021-9258(18)32345-7.
    1. Liu M., Fu X., Jiang L., Ma J., Zheng X., Wang S., Guo H., Tian T., Nan K., Wang W. Colon Cancer Cells Secreted CXCL11 via RBP-Jκ to Facilitated Tumour-associated Macrophage-induced Cancer Metastasis. J. Cell. Mol. Med. 2021;25:10575–10590. doi: 10.1111/jcmm.16989.
    1. Hayashi H., Sakai T. Biological Significance of Local TGF-β Activation in Liver Diseases. Front. Physiol. 2012;3:1–11. doi: 10.3389/fphys.2012.00012.
    1. Dallas S.L., Sivakumar P., Jones C.J.P., Chen Q., Peters D.M., Mosher D.F., Humphries M.J., Kielty C.M. Fibronectin Regulates Latent Transforming Growth Factor-β (TGFβ) by Controlling Matrix Assembly of Latent TGFβ-Binding Protein-1. J. Biol. Chem. 2005;280:18871–18880. doi: 10.1074/jbc.M410762200.
    1. Lyons R.M., Gentry L.E., Purchio A.F., Moses H.L. Mechanism of Activation of Latent Recombinant Transforming Growth Factor Beta 1 by Plasmin. J. Cell Biol. 1990;110:1361–1367. doi: 10.1083/jcb.110.4.1361.
    1. Yu Q., Stamenkovic I. Cell Surface-Localized Matrix Metalloproteinase-9 Proteolytically Activates TGF-β and Promotes Tumor Invasion and Angiogenesis. Genes Dev. 2000;14:163–176. doi: 10.1101/gad.14.2.163.
    1. Bourd-Boittin K., Bonnier D., Leyme A., Mari B., Tuffery P., Samson M., Ezan F., Baffet G., Theret N. Protease Profiling of Liver Fibrosis Reveals the ADAM Metallopeptidase with Thrombospondin Type 1 Motif, 1 as a Central Activator of Transforming Growth Factor Beta. Hepatology. 2011;54:2173–2184. doi: 10.1002/hep.24598.
    1. Hara M., Kirita A., Kondo W., Matsuura T., Nagatsuma K., Dohmae N., Ogawa S., Imajoh-Ohmi S., Friedman S.L., Rifkin D.B., et al. LAP Degradation Product Reflects Plasma Kallikrein-Dependent TGF-β Activation in Patients with Hepatic Fibrosis. Springerplus. 2014;3:221. doi: 10.1186/2193-1801-3-221.
    1. Hara M., Inoue I., Yamazaki Y., Kirita A., Matsuura T., Friedman S.L., Rifkin D.B., Kojima S. L59 TGF-β LAP Degradation Products Serve as a Promising Blood Biomarker for Liver Fibrogenesis in Mice. Fibrogenesis Tissue Repair. 2015;8:17. doi: 10.1186/s13069-015-0034-9.
    1. O’Brien P.J., Ramanathan R., Yingling J.M., Baselga J., Rothenberg M.L., Carducci M., Daly T., Adcock D., Lahn M. Analysis and Variability of TGFbeta Measurements in Cancer Patients with Skeletal Metastases. Biologics. 2008;2:563–569. doi: 10.2147/BTT.S2874.
    1. Mancini D., Monteagudo J., Suárez-Fariñas M., Bander J., Varshney R., Gonzalez J., Coller B.S., Ahamed J. New Methodologies to Accurately Assess Circulating Active Transforming Growth Factor-Β1 Levels: Implications for Evaluating Heart Failure and the Impact of Left Ventricular Assist Devices. Transl. Res. 2018;192:15–29. doi: 10.1016/j.trsl.2017.10.006.
    1. Yokoyama H., Masaki T., Inoue I., Nakamura M., Mezaki Y., Saeki C., Oikawa T., Saruta M., Takahashi H., Ikegami M., et al. Histological and Biochemical Evaluation of Transforming Growth Factor-β Activation and Its Clinical Significance in Patients with Chronic Liver Disease. Heliyon. 2019;5:e01231. doi: 10.1016/j.heliyon.2019.e01231.
    1. Kropf J., Schurek J.O., Wollner A., Gressner A.M. Immunological Measurement of Transforming Growth Factor-Beta I (TGF- Β1) in Blood; Assay Development and Comparison. Clin. Chem. 1997;43:1965–1974. doi: 10.1093/clinchem/43.10.1965.
    1. Coffey R.J., Kost L.J., Lyons R.M., Moses H.L., LaRusso N.F. Hepatic Processing of Transforming Growth Factor Beta in the Rat. Uptake, Metabolism, and Biliary Excretion. J. Clin. Investig. 1987;80:750–757. doi: 10.1172/JCI113130.
    1. Teraoka R., Hara M., Kikuta K., Hirooka Y., Furutani Y., Shimosegawa T., Masamune A., Kojima S. Plasma Kallikrein-Dependent Transforming Growth Factor-β Activation in Patients With Chronic Pancreatitis and Pancreatic Cancer. Pancreas. 2017;46:e20–e22. doi: 10.1097/MPA.0000000000000736.
    1. Combet C., Blanchet C., Geourjon C., Deléage G. NPS@: Network Protein Sequence Analysis. Trends Biochem. Sci. 2000;25:147–150. doi: 10.1016/S0968-0004(99)01540-6.
    1. Nissen N.I., Kehlet S., Johansen A.Z., Chen I.M., Karsdal M., Johansen J.S., Diab H.M.H., Jørgensen L.N., Sun S., Manon-Jensen T., et al. Noninvasive Prognostic Biomarker Potential of Quantifying the Propeptides of Type XI Collagen Alpha-1 Chain (PRO-C11) in Patients with Pancreatic Ductal Adenocarcinoma. Int. J. Cancer. 2021;149:228–238. doi: 10.1002/ijc.33551.
    1. Gefter M.L., Margulies D.H., Scharff M.D. A Simple Method for Polyethylene Glycol-Promoted Hybridization of Mouse Myeloma Cells. Somatic Cell Genet. 1977;3:231–236. doi: 10.1007/BF01551818.
    1. Nielsen M.J., Nedergaard A.F., Sun S., Veidal S.S., Larsen L., Zheng Q., Suetta C., Henriksen K., Christiansen C., Karsdal M.A., et al. The Neo-Epitope Specific PRO-C3 ELISA Measures True Formation of Type III Collagen Associated with Liver and Muscle Parameters. Am. J. Transl. Res. 2013;5:303–315.
    1. Sun S., Henriksen K., Karsdal M.A., Byrjalsen I., Rittweger J., Armbrecht G., Belavy D.L., Felsenberg D., Nedergaard A.F. Collagen Type III and VI Turnover in Response to Long-Term Immobilization. PLoS ONE. 2015;10:e0144525. doi: 10.1371/journal.pone.0144525.
    1. Chen I.M., Willumsen N., Dehlendorff C., Johansen A.Z., Jensen B.V., Hansen C.P., Hasselby J.P., Bojesen S.E., Pfeiffer P., Nielsen S.E., et al. Clinical Value of Serum Hyaluronan and Propeptide of Type III Collagen in Patients with Pancreatic Cancer. Int. J. Cancer. 2020;146:2913–2922. doi: 10.1002/ijc.32751.
    1. Chen I., Jensen B.V., Bojesen S.E., Johansen A.Z., Schultz N.A., Hansen C.P., Hasselby J.P., Holl N.H., Nissen M.H.B., Bjerregaard J.K., et al. Identification of New Biomarkers in Patients with Pancreatic Cancer (BIOPAC): A Study Protocol of an Open Cohort Study. Cancer Sci. Ther. 2019;11:232–239.
    1. Meyer A., Wang W., Qu J., Croft L., Degen J.L., Coller B.S., Ahamed J. Platelet TGF-Β1 Contributions to Plasma TGF-Β1, Cardiac Fibrosis, and Systolic Dysfunction in a Mouse Model of Pressure Overload. Blood. 2012;119:1064–1074. doi: 10.1182/blood-2011-09-377648.
    1. Grainger D.J., Mosedale D.E., Metcalfe J.C., Weissberg P.L., Kemp P.R. Active and Acid-Activatable TGF-β in Human Sera, Platelets and Plasma. Clin. Chim. Acta. 1995;235:11–31. doi: 10.1016/0009-8981(94)05995-4.
    1. Willumsen N., Bager C., Karsdal M.A. Matrix Metalloprotease Generated Fragments of Type VI Collagen Have Serum Biomarker Potential in Cancer–A Proof of Concept Study. Transl. Oncol. 2019;12:693–698. doi: 10.1016/j.tranon.2019.02.004.
    1. Kerbert A.J.C., Gupta S., Alabsawy E., Dobler I., Lønsmann I., Hall A., Nielsen S.H., Nielsen M.J., Gronbaek H., Amoros À., et al. Biomarkers of Extracellular Matrix Formation Are Associated with Acute-on-Chronic Liver Failure. JHEP Reports. 2021;3:100355. doi: 10.1016/j.jhepr.2021.100355.
    1. Rønnow S.R., Dabbagh R.Q., Genovese F., Nanthakumar C.B., Barrett V.J., Good R.B., Brockbank S., Cruwys S., Jessen H., Sorensen G.L., et al. Prolonged Scar-in-a-Jar: An in Vitro Screening Tool for Anti-Fibrotic Therapies Using Biomarkers of Extracellular Matrix Synthesis. Respir. Res. 2020;21:108. doi: 10.1186/s12931-020-01369-1.
    1. Zhao J., Liang Y., Yin Q., Liu S., Wang Q., Tang Y., Cao C. Clinical and Prognostic Significance of Serum Transforming Growth Factor-Beta1 Levels in Patients with Pancreatic Ductal Adenocarcinoma. Braz. J. Med. Biol. Res. 2016;49 doi: 10.1590/1414-431x20165485.
    1. Park H., Bang J., Nam A., Park J.E., Jin M.H., Bang Y., Oh D. The Prognostic Role of Soluble TGF-beta and Its Dynamics in Unresectable Pancreatic Cancer Treated with Chemotherapy. Cancer Med. 2020;9:43–51. doi: 10.1002/cam4.2677.
    1. Li J., Shen C., Wang X., Lai Y., Zhou K., Li P., Liu L., Che G. Prognostic Value of TGF-β in Lung Cancer: Systematic Review and Meta-Analysis. BMC Cancer. 2019;19:691. doi: 10.1186/s12885-019-5917-5.
    1. Lin T.-H., Shao Y.-Y., Chan S.-Y., Huang C.-Y., Hsu C.-H., Cheng A.-L. High Serum Transforming Growth Factor-Β1 Levels Predict Outcome in Hepatocellular Carcinoma Patients Treated with Sorafenib. Clin. Cancer Res. 2015;21:3678–3684. doi: 10.1158/1078-0432.CCR-14-1954.
    1. Rouce R.H., Shaim H., Sekine T., Weber G., Ballard B., Ku S., Barese C., Murali V., Wu M.-F., Liu H., et al. The TGF-β/SMAD Pathway Is an Important Mechanism for NK Cell Immune Evasion in Childhood B-Acute Lymphoblastic Leukemia. Leukemia. 2016;30:800–811. doi: 10.1038/leu.2015.327.
    1. Teixeira A.F., ten Dijke P., Zhu H.-J. On-Target Anti-TGF-β Therapies Are Not Succeeding in Clinical Cancer Treatments: What Are Remaining Challenges? Front. Cell Dev. Biol. 2020;8:1–18. doi: 10.3389/fcell.2020.00605.
    1. Ciardiello D., Elez E., Tabernero J., Seoane J. Clinical Development of Therapies Targeting TGFβ: Current Knowledge and Future Perspectives. Ann. Oncol. 2020;31:1336–1349. doi: 10.1016/j.annonc.2020.07.009.
    1. Kim B.-G., Malek E., Choi S.H., Ignatz-Hoover J.J., Driscoll J.J. Novel Therapies Emerging in Oncology to Target the TGF-β Pathway. J. Hematol. Oncol. 2021;14:55. doi: 10.1186/s13045-021-01053-x.
    1. Huynh L., Hipolito C., ten Dijke P. A Perspective on the Development of TGF-β Inhibitors for Cancer Treatment. Biomolecules. 2019;9:743. doi: 10.3390/biom9110743.

Source: PubMed

3
Prenumerera