Transcriptomic analysis delineates potential signature genes and miRNAs associated with the pathogenesis of asthma

Prithvi Singh, Archana Sharma, Rishabh Jha, Shweta Arora, Rafiq Ahmad, Arshad Husain Rahmani, Saleh A Almatroodi, Ravins Dohare, Mansoor Ali Syed, Prithvi Singh, Archana Sharma, Rishabh Jha, Shweta Arora, Rafiq Ahmad, Arshad Husain Rahmani, Saleh A Almatroodi, Ravins Dohare, Mansoor Ali Syed

Abstract

Asthma is a multifarious disease affecting several million people around the world. It has a heterogeneous risk architecture inclusive of both genetic and environmental factors. This heterogeneity can be utilised to identify differentially expressed biomarkers of the disease, which may ultimately aid in the development of more localized and molecularly targeted therapies. In this respect, our study complies with meta-analysis of microarray datasets containing mRNA expression profiles of both asthmatic and control patients, to identify the critical Differentially Expressed Genes (DEGs) involved in the pathogenesis of asthma. We found a total of 30 DEGs out of which 13 were involved in the pathway and functional enrichment analysis. Moreover, 5 DEGs were identified as the hub genes by network centrality-based analysis. Most hub genes were involved in protease/antiprotease pathways. Also, 26 miRNAs and 20 TFs having an association with these hub genes were found to be intricated in a 3-node miRNA Feed-Forward Loop. Out of these, miR-34b and miR-449c were identified as the key miRNAs regulating the expression of SERPINB2 gene and SMAD4 transcription factor. Thus, our study is suggestive of certain miRNAs and unexplored pathways which may pave a way to unravel critical therapeutic targets in asthma.

Conflict of interest statement

The authors declare no competing interests.

Figures

Figure 1
Figure 1
PCA plot in the left panel represents the variation in the expression data between controls and asthmatics. Each point in the plot shows the overall expression value of 30 screened DEGs. The color of each point represents the disease status: magenta for controls and green for asthmatics. The percentage of total variation which is accounted for by the 1st and 2nd principal components are shown on the x and y axes respectively. Scree plot in the right panel shows the percentage of explained variances captured by their corresponding principal components.
Figure 2
Figure 2
Heatmap plot of top 10 up and downregulated DEGs in asthma. Expression values for each DEG (row) are normalized across all the samples (columns). Hierarchical clustering using Euclidean distances was employed for both rows and columns with cluster dendrograms presented along the left and top sides of the plot. The categorical annotation bars (above the heatmap) show the column annotations for age, gender and disease status. The location of each gene on its respective chromosome was shown in the right bar (color bands) as row annotation.
Figure 3
Figure 3
Circos plot representation of significantly enriched pathways linked with 9 asthma-associated DEGs. Outside the circle, 17 significantly enriched pathways (on the left) and 9 dysregulated genes (on the right) are indicated. Each DEG is denoted by a unique color band and the undirected colored edge inside the circle represents the association of a particular gene with their respective pathway(s).
Figure 4
Figure 4
Venn plots showing the significant hub genes obtained from (A) upregulated and (B) downregulated PPI networks, respectively. Areas with different colors correspond to different centrality measures. The cross-intersection area shows the hub genes in both networks. A total of 5 hub genes were obtained for the up and downregulated PPI networks.
Figure 5
Figure 5
Violin plots of 5 hub genes filtered based on functional enrichment analysis and PPI network centrality measures respectively. This plot represents the distribution density of the underlying expression data for hub genes. The top and bottom of the embedded box signify the 75th and 25th percentile of the distribution, respectively. The line inside the box represents the median. Endpoints of the axis are labelled by the minimum and maximum values. Control and asthmatic samples are distinguished by yellow and blue colors, respectively.
Figure 6
Figure 6
Asthma-specific 3-node miRNA FFL regulatory network with 51 nodes and 197 edges, respectively. The green-colored rectangular nodes represent asthma-associated miRNAs, red-colored triangular nodes represent transcription factors, and cyan-colored circular nodes represent asthma-associated hub genes.
Figure 7
Figure 7
Topological parameter graphical plots of the asthma-specific 3-node miRNA FFL representing (A) Node degree distribution, (B) Average clustering coefficient, (C) Topological coefficient, (D) Betweenness centrality, (E) Closeness centrality, (F) Shortest path length distribution. The lines are fitted with power laws.

References

    1. Enarson D. Respiratory Diseases in the World: Realities of Today—Opportunities for Tomorrow: Forum of International Respiratory Societies. Sheffield: European Respiratory Society; 2013.
    1. Holgate ST. Pathogenesis of asthma. Clin. Exp. Allergy J. Br. Soc. Allergy Clin. Immunol. 2008;38(6):872–897. doi: 10.1111/j.1365-2222.2008.02971.x.
    1. Brightling CE, Bradding P, Symon FA, Holgate ST, Wardlaw AJ, Pavord ID. Mast-cell infiltration of airway smooth muscle in asthma. N. Engl. J. Med. 2002;346(22):1699–1705. doi: 10.1056/NEJMoa012705.
    1. Munakata M. Airway remodeling and airway smooth muscle in asthma. Allergol. Int. 2006;55(3):235–243. doi: 10.2332/allergolint.55.235.
    1. James AL, et al. Airway smooth muscle hypertrophy and hyperplasia in asthma. Am. J. Respir. Crit. Care Med. 2012;185(10):1058–1064. doi: 10.1164/rccm.201110-1849OC.
    1. Wenzel SE. Asthma: defining of the persistent adult phenotypes. Lancet. 2006;368(9537):804–813. doi: 10.1016/S0140-6736(06)69290-8.
    1. de Nijs SB, Venekamp LN, Bel EH. Adult-onset asthma: is it really different? Eur. Respir. Rev. 2013;22(127):44–52. doi: 10.1183/09059180.00007112.
    1. Ray A, Oriss TB, Wenzel SE. Emerging molecular phenotypes of asthma. Am. J. Physiol. Lung Cell. Mol. Physiol. 2015;308(2):L130–140. doi: 10.1152/ajplung.00070.2014.
    1. Robinson DS, et al. Predominant TH2-like bronchoalveolar T-lymphocyte population in atopic asthma. N. Engl. J. Med. 1992;326(5):298–304. doi: 10.1056/NEJM199201303260504.
    1. Wenzel SE. Asthma phenotypes: the evolution from clinical to molecular approaches. Nat. Med. 2012;18(5):716–725. doi: 10.1038/nm.2678.
    1. Krug N, et al. T-cell cytokine profile evaluated at the single cell level in BAL and blood in allergic asthma. Am. J. Respir. Cell Mol. Biol. 1996;14(4):319–326. doi: 10.1165/ajrcmb.14.4.8600935.
    1. Kelly EA, Rodriguez RR, Busse WW, Jarjour NN. The effect of segmental bronchoprovocation with allergen on airway lymphocyte function. Am. J. Respir. Crit. Care Med. 1997;156(5):1421–1428. doi: 10.1164/ajrccm.156.5.9703054.
    1. Raman K. Construction and analysis of protein-protein interaction networks. Autom. Exp. 2010;2(1):2. doi: 10.1186/1759-4499-2-2.
    1. Chen S-J, Liao D-L, Chen C-H, Wang T-Y, Chen K-C. Construction and analysis of protein-protein interaction network of heroin use disorder. Sci. Rep. 2019;9(1):4980. doi: 10.1038/s41598-019-41552-z.
    1. Estrada E. Virtual identification of essential proteins within the protein interaction network of yeast. Proteomics. 2006;6(1):35–40. doi: 10.1002/pmic.200500209.
    1. Jeong H, Mason SP, Barabási A-L, Oltvai ZN. Lethality and centrality in protein networks. Nature. 2001;411(6833):41–42. doi: 10.1038/35075138.
    1. Shalgi R, Brosh R, Oren M, Pilpel Y, Rotter V. Coupling transcriptional and post-transcriptional miRNA regulation in the control of cell fate. Aging. 2009;1(9):762–770. doi: 10.18632/aging.100085.
    1. Shalgi R, Lieber D, Oren M, Pilpel Y. Global and local architecture of the mammalian microRNA-transcription factor regulatory network. PLoS Comput. Biol. 2007;3(7):e131. doi: 10.1371/journal.pcbi.0030131.
    1. Harkema JR, Carey SA, Wagner JG. The nose revisited: a brief review of the comparative structure, function, and toxicologic pathology of the nasal epithelium. Toxicol. Pathol. 2006;34(3):252–269. doi: 10.1080/01926230600713475.
    1. Wu Q, Qin H, Zhao Q, He X-X. Emerging role of transcription factor-microRNA-target gene feed-forward loops in cancer. Biomed. Rep. 2015;3(5):611–616. doi: 10.3892/br.2015.477.
    1. Liu J, Hua P, Hui L, Zhang L-L, Hu Z, Zhu Y-W. Identification of hub genes and pathways associated with hepatocellular carcinoma based on network strategy. Exp. Ther. Med. 2016;12(4):2109–2119. doi: 10.3892/etm.2016.3599.
    1. Poole A, et al. Dissecting childhood asthma with nasal transcriptomics distinguishes subphenotypes of disease. J. Allergy Clin. Immunol. 2014;133(3):670–678.e12. doi: 10.1016/j.jaci.2013.11.025.
    1. Singhania A, et al. Multitissue Transcriptomics Delineates the Diversity of Airway T Cell Functions in Asthma. Am. J. Respir. Cell Mol. Biol. 2018;58(2):261–270. doi: 10.1165/rcmb.2017-0162OC.
    1. Henskens YM, Veerman EC, Nieuw Amerongen AV. Cystatins in health and disease. Biol. Chem. Hoppe. Seyler. 1996;377(2):71–86. doi: 10.1515/bchm3.1996.377.2.71.
    1. Bonser LR, Erle DJ. Airway Mucus and Asthma: the role of MUC5AC and MUC5B. J. Clin. Med. 2017;6(12):112. doi: 10.3390/jcm6120112.
    1. Fang F, Pan J, Li Y, Li Y, Feng X, Wang J. Identification of potential transcriptomic markers in developing asthma: An integrative analysis of gene expression profiles. Mol. Immunol. 2017;92:38–44. doi: 10.1016/j.molimm.2017.09.021.
    1. Nie X, et al. Consistent biomarkers and related pathogenesis underlying asthma revealed by systems biology approach. Int. J. Mol. Sci. 2019;20(16):4037. doi: 10.3390/ijms20164037.
    1. Fernández-Delgado L, et al. Allergens induce the release of lactoferrin by neutrophils from asthmatic patients. PLoS ONE. 2015;10(10):e0141278. doi: 10.1371/journal.pone.0141278.
    1. Kruzel ML, Bacsi A, Choudhury B, Sur S, Boldogh I. Lactoferrin decreases pollen antigen-induced allergic airway inflammation in a murine model of asthma. Immunology. 2006;119(2):159–166. doi: 10.1111/j.1365-2567.2006.02417.x.
    1. Kucharewicz I, Kowal K, Buczko W, Bodzenta-Łukaszyk A. The plasmin system in airway remodeling. Thromb. Res. 2003;112(1–2):1–7. doi: 10.1016/j.thromres.2003.10.011.
    1. Woodruff PG, et al. T-helper type 2-driven inflammation defines major subphenotypes of asthma. Am. J. Respir. Crit. Care Med. 2009;180(5):388–395. doi: 10.1164/rccm.200903-0392OC.
    1. Mertens TCJ, Hiemstra PS, Taube C. Azithromycin differentially affects the IL-13-induced expression profile in human bronchial epithelial cells. Pulm. Pharmacol. Ther. 2016;39:14–20. doi: 10.1016/j.pupt.2016.05.005.
    1. Kuperman DA, et al. Direct effects of interleukin-13 on epithelial cells cause airway hyperreactivity and mucus overproduction in asthma. Nat. Med. 2002;8(8):885–889. doi: 10.1038/nm734.
    1. Shamji MH, et al. Antiapoptotic serine protease inhibitors contribute to survival of allergenic T H 2 cells. J. Allergy Clin. Immunol. 2018;142(2):569–581.e5. doi: 10.1016/j.jaci.2017.07.055.
    1. Sivaprasad U, et al. SERPINB3/B4 contributes to early inflammation and barrier dysfunction in an experimental murine model of atopic dermatitis. J. Invest. Dermatol. 2015;135(1):160–169. doi: 10.1038/jid.2014.353.
    1. Ray R, Choi M, Zhang Z, Silverman GA, Askew D, Mukherjee AB. Uteroglobin suppresses SCCA gene expression associated with allergic asthma. J. Biol. Chem. 2005;280(11):9761–9764. doi: 10.1074/jbc.C400581200.
    1. Johnson PRA, et al. Connective tissue growth factor induces extracellular matrix in asthmatic airway smooth muscle. Am. J. Respir. Crit. Care Med. 2006;173(1):32–41. doi: 10.1164/rccm.200406-703OC.
    1. Wang A, Pan D, Lee Y-H, Martinez GJ, Feng X, Dong C. Cutting edge: Smad2 and Smad4 regulate TGF-β–mediated Il9 gene expression via EZH2 displacement. J. Immunol. 2013;191(10):4908–4912. doi: 10.4049/jimmunol.1300433.
    1. Tidin O, Friman ET, Naef F, Suter DM. Quantitative relationships between SMAD dynamics and target gene activation kinetics in single live cells. Sci. Rep. 2019;9(1):5372. doi: 10.1038/s41598-019-41870-2.
    1. Wortley MA, Bonvini SJ. Transforming growth factor-β1: a novel cause of resistance to bronchodilators in Asthma? Am. J. Respir. Cell Mol. Biol. 2019;61(2):134–135. doi: 10.1165/rcmb.2019-0020ED.
    1. Kim YH, Lee S-H. TGF-β/SMAD4 mediated UCP2 downregulation contributes to Aspergillus protease-induced inflammation in primary bronchial epithelial cells. Redox Biol. 2018;18:104–113. doi: 10.1016/j.redox.2018.06.011.
    1. Solberg OD, et al. Airway epithelial miRNA expression is altered in asthma. Am. J. Respir. Crit. Care Med. 2012;186(10):965–974. doi: 10.1164/rccm.201201-0027OC.
    1. Marcet B, et al. Control of vertebrate multiciliogenesis by miR-449 through direct repression of the Delta/Notch pathway. Nat. Cell Biol. 2011;13(6):693–699. doi: 10.1038/ncb2241.
    1. Yin H, et al. MicroRNA-34/449 targets IGFBP-3 and attenuates airway remodeling by suppressing Nur77-mediated autophagy. Cell Death Dis. 2017;8(8):e2998. doi: 10.1038/cddis.2017.357.
    1. Clough E, Barrett T. The Gene Expression Omnibus Database. Methods Mol. Biol. Clifton NJ. 2016;1418:93–110. doi: 10.1007/978-1-4939-3578-9_5.
    1. Moher D, Liberati A, Tetzlaff J, Altman DG, for the PRISMA Group Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009;339:b2535–b2535. doi: 10.1136/bmj.b2535.
    1. Davis S, Meltzer PS. GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinforma. Oxf. Engl. 2007;23(14):1846–1847. doi: 10.1093/bioinformatics/btm254.
    1. Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP. Summaries of Affymetrix GeneChip probe level data. Nucl. Acids Res. 2003;31(4):e15. doi: 10.1093/nar/gng015.
    1. Gray KA, Seal RL, Tweedie S, Wright MW, Bruford EA. A review of the new HGNC gene family resource. Hum. Genomics. 2016;10:6. doi: 10.1186/s40246-016-0062-6.
    1. Ahmad S, et al. Transcriptome meta-analysis deciphers a dysregulation in immune response-associated gene signatures during sepsis. Genes. 2019;10(12):1005. doi: 10.3390/genes10121005.
    1. Shriwash N, Singh P, Arora S, Ali SM, Ali S, Dohare R. Identification of differentially expressed genes in small and non-small cell lung cancer based on meta-analysis of mRNA. Heliyon. 2019;5(6):e01707. doi: 10.1016/j.heliyon.2019.e01707.
    1. Marot G, Foulley J-L, Mayer C-D, Jaffrézic F. Moderated effect size and P-value combinations for microarray meta-analyses. Bioinforma. Oxf. Engl. 2009;25(20):2692–2699. doi: 10.1093/bioinformatics/btp444.
    1. Ritchie ME, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucl. Acids Res. 2015;43(7):e47–e47. doi: 10.1093/nar/gkv007.
    1. Fisher RA. Statistical Methods for Research Workers. In: Kotz S, Johnson NL, editors. Breakthroughs in Statistics. New York, NY: Springer; 1992. pp. 66–70.
    1. Benjamini Y. Discovering the false discovery rate: False Discovery Rate. J. R. Stat. Soc. Ser. B Stat. Methodol. 2010;72(4):405–416. doi: 10.1111/j.1467-9868.2010.00746.x.
    1. Chen EY, et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinform. 2013;14:128. doi: 10.1186/1471-2105-14-128.
    1. Kuleshov MV, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucl. Acids Res. 2016;44(W1):W90–97. doi: 10.1093/nar/gkw377.
    1. Oughtred R, et al. The BioGRID interaction database: 2019 update. Nucl. Acids Res. 2019;47(D1):D529–D541. doi: 10.1093/nar/gky1079.
    1. Alanis-Lobato G, Andrade-Navarro MA, Schaefer MH. HIPPIE v2.0: enhancing meaningfulness and reliability of protein–protein interaction networks. Nucl. Acids Res. 2017;45(D1):D408–D414. doi: 10.1093/nar/gkw985.
    1. Shannon P, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–2504. doi: 10.1101/gr.1239303.
    1. Sriroopreddy R, Sajeed R, Raghuraman P, Sudandiradoss C, et al. Differentially expressed gene (DEG) based protein-protein interaction (PPI) network identifies a spectrum of gene interactome, transcriptome and correlated miRNA in nondisjunction Down syndrome. Int. J. Biol. Macromol. 2019;122:1080–1089. doi: 10.1016/j.ijbiomac.2018.09.056.
    1. Sticht C, De La Torre C, Parveen A, Gretz N. miRWalk: An online resource for prediction of microRNA binding sites. PLoS ONE. 2018;13(10):e0206239. doi: 10.1371/journal.pone.0206239.
    1. Açıcı K, Terzi YK, Oğul H. Retrieving relevant experiments: The case of microRNA microarrays. Biosystems. 2015;134:71–78. doi: 10.1016/j.biosystems.2015.06.003.
    1. Li J-H, Liu S, Zhou H, Qu L-H, Yang J-H. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq data. Nucl. Acids Res. 2014;42(D1):D92–D97. doi: 10.1093/nar/gkt1248.
    1. Zhou K-R, et al. ChIPBase v2.0: decoding transcriptional regulatory networks of non-coding RNAs and protein-coding genes from ChIP-seq data. Nucl. Acids Res. 2017;45(D1):D43–D50. doi: 10.1093/nar/gkw965.
    1. Zheng G, et al. ITFP: an integrated platform of mammalian transcription factors. Bioinforma. Oxf. Engl. 2008;24(20):2416–2417. doi: 10.1093/bioinformatics/btn439.
    1. Sun J, Gong X, Purow B, Zhao Z. Uncovering microRNA and transcription factor mediated regulatory networks in glioblastoma. PLoS Comput. Biol. 2012;8(7):e1002488. doi: 10.1371/journal.pcbi.1002488.

Source: PubMed

3
Prenumerera