Macular sub-layer thinning and association with pulmonary function tests in Amyotrophic Lateral Sclerosis

Joseph M Simonett, Russell Huang, Nailah Siddique, Sina Farsiu, Teepu Siddique, Nicholas J Volpe, Amani A Fawzi, Joseph M Simonett, Russell Huang, Nailah Siddique, Sina Farsiu, Teepu Siddique, Nicholas J Volpe, Amani A Fawzi

Abstract

Amyotrophic Lateral Sclerosis (ALS) is a complex neurodegenerative disorder that may have anterior visual pathway involvement. In this study, we compare the macular structure of patients with ALS to healthy controls, and examine correlations between macular sub-layer thickness measurements and pulmonary function tests and disease duration. ALS patients underwent optical coherence tomography (OCT) imaging to obtain macular cube scans of the right eye. Macular cube OCT data from age-matched healthy subjects were provided by the OCT reading center. Semi-automated retinal segmentation software was used to quantify macular sub-layers. Pulmonary function tests and time since symptom onset were collected retrospectively from the electronic medical records of ALS patients. Macular retinal nerve fiber layer was significantly thinner in ALS patients compared to healthy controls (P < 0.05). Total macular and other sub-layer thicknesses were not reduced in the ALS cohort. Macular retinal nerve fiber layer thickness positively correlated with forced vital capacity % predicted and forced expiratory volume in 1 second % predicted (P < 0.05). In conclusion, analysis of OCT measurements supports the involvement of the anterior visual pathway in ALS. Subtle structural thinning in the macular retinal nerve fiber layer correlates with pulmonary function tests.

Figures

Figure 1
Figure 1
Scatter plot representing the correlation between Macular RNFL thickness and (A) Forced vital capacity percent predicted and (B) Forced expiratory volume in 1 second percent predicted. r value represents partial correlation coefficient controlling for age, gender, and time interval between OCT and clinical data collection.

References

    1. Giordana M. T. et al.. Dementia and cognitive impairment in amyotrophic lateral sclerosis: a review. Neurol Sci. 32, 9–16 (2011).
    1. Phukan J., Pender N. P. & Hardiman O. Cognitive impairment in amyotrophic lateral sclerosis. Lancet Neurol. 6, 994–1003 (2007).
    1. Mezzapesa D. M. et al.. Whole-brain and regional brain atrophy in amyotrophic lateral sclerosis. AJNR Am J Neuroradiol. 28, 255–259 (2007).
    1. Kassubek J. et al.. Global brain atrophy and corticospinal tract alterations in ALS, as investigated by voxel-based morphometry of 3-D MRI. Amyotroph Lateral Scler Other Motor Neuron Disord. 6, 213–220 (2005).
    1. Ellis C. M. et al.. Volumetric analysis reveals corticospinal tract degeneration and extramotor involvement in ALS. Neurology. 57, 1571–1578 (2001).
    1. Meoded A. et al.. Imaging findings associated with cognitive performance in primary lateral sclerosis and amyotrophic lateral sclerosis. Dement Geriatr Cogn Dis Extra. 3, 233–250 (2013).
    1. Shaunak S. et al.. Oculomotor function in amyotrophic lateral sclerosis: evidence for frontal impairment. Ann Neurol. 38, 38–44 (1995).
    1. Ohki M. et al.. Ocular abnormalities in amyotrophic lateral sclerosis. Acta Otolaryngol Suppl. 511, 138–142 (1994).
    1. Jacobs L., Bozian D., Heffner R. R. Jr. & Barron S. A. An eye movement disorder in amyotrophic lateral sclerosis. Neurology. 31, 1282–1287 (1981).
    1. Leveille A., Kiernan J., Goodwin J. A. & Antel J. Eye movements in amyotrophic lateral sclerosis. Arch Neurol. 39, 684–686 (1982).
    1. Marti-Fabregas J. & Roig C. Oculomotor abnormalities in motor neuron disease. J Neurol. 240, 475–478 (1993).
    1. Abel L. A., Williams I. M., Gibson K. L. & Levi L. Effects of stimulus velocity and acceleration on smooth pursuit in motor neuron disease. J Neurol. 242, 419–424 (1995).
    1. Esteban A., De Andres C. & Gimenez-Roldan S. Abnormalities of Bell’s phenomenon in amyotrophic lateral sclerosis: a clinical and electrophysiological evaluation. J Neurol Neurosurg Psychiatry. 41, 690–698 (1978).
    1. Moss H. E. et al.. Cross-sectional evaluation of clinical neuro-ophthalmic abnormalities in an amyotrophic lateral sclerosis population. J Neurol Sci. 314, 97–101 (2012).
    1. Averbuch-Heller L., Helmchen C., Horn A. K., Leigh R. J. & Buttner-Ennerver J. A. Slow vertical saccades in motor neuron disease: correlation of structure and function. Ann Neurol. 44, 641–648 (1998).
    1. Proudfoot M. et al.. Eye-tracking in amyotrophic lateral sclerosis: A longitudinal study of saccadic and cognitive tasks. Amyotroph Lateral Scler Frontotemporal Degener. 17, 101–111 (2015).
    1. Burrell J. R., Carpenter R. H., Hodges J. R. & Kiernan M. C. Early saccades in amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener. 14, 294–301 (2013).
    1. Munte T. F. et al.. Alteration of early components of the visual evoked potential in amyotrophic lateral sclerosis. J Neurol. 245, 206–210 (1998).
    1. Matheson J. K., Harrington H. J. & Hallett M. Abnormalities of multimodality evoked potentials in amyotrophic lateral sclerosis. Arch Neurol. 43, 338–340 (1986).
    1. Palma V., Guadagnino M., Brescia Morra V. & Nolfe G. Multimodality evoked potentials in sporadic amyotrophic lateral sclerosis: a statistical approach. Electromyogr Clin Neurophysiol. 33, 167–171 (1993).
    1. Abalo-Lojo J. M. et al.. Retinal nerve fiber layer thickness, brain atrophy, and disability in multiple sclerosis patients. J Neuroophthalmol. 34, 23–28 (2014).
    1. Yu J. G. et al.. Retinal nerve fiber layer thickness changes in Parkinson disease: a meta-analysis. PLoS One. 9, e85718 (2014).
    1. Marziani E. et al.. Evaluation of retinal nerve fiber layer and ganglion cell layer thickness in Alzheimer’s disease using spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 54, 5953–5958 (2013).
    1. Kirbas S., Turkyilmaz K., Anlar O., Tufekci A. & Durmus M. Retinal nerve fiber layer thickness in patients with Alzheimer disease. J Neuroophthalmol. 33, 58–61 (2013).
    1. Satue M. et al.. Retinal thinning and correlation with functional disability in patients with Parkinson’s disease. Br J Ophthalmol. 98, 350–355 (2014).
    1. de Seze J. et al.. Optical coherence tomography in neuromyelitis optica. Arch Neurol. 65, 920–923 (2008).
    1. Ratchford J. N. et al.. Optical coherence tomography helps differentiate neuromyelitis optica and MS optic neuropathies. Neurology. 73, 302–308 (2009).
    1. Rohani M. et al.. Retinal nerve changes in patients with tremor dominant and akinetic rigid Parkinson’s disease. Neurol Sci. 34, 689–693 (2013).
    1. Schneider M. et al.. Retinal single-layer analysis in Parkinsonian syndromes: an optical coherence tomography study. J Neural Transm. 121, 41–47 (2014).
    1. Marius Ringelstein P. A., Martin Südmeyer, Jens Harmel, Ann-Kristin Müller, Nazmiye Keser, David Finis, Stefano Ferrea, Rainer Guthoff, Alfon Schnitzler, Hans-Peter Hartung, Axel Methner & Orhan Aktas. Subtle retinal pathology in amyotrophic lateral sclerosis. Annals of Clinical and Translational Neurology. 1, 290–297 (2014).
    1. Roth N. M. et al.. Optical coherence tomography does not support optic nerve involvement in amyotrophic lateral sclerosis. Eur J Neurol. 20, 1170–1176 (2013).
    1. Hubers A. et al.. Retinal involvement in amyotrophic lateral sclerosis: a study with optical coherence tomography and diffusion tensor imaging. J Neural Transm (Vienna). 123, 281–287 (2016).
    1. Stambler N., Charatan M. & Cedarbaum J. M. Prognostic indicators of survival in ALS. ALS CNTF Treatment Study Group. Neurology. 50, 66–72 (1998).
    1. Javad Mousavi S. A. et al.. Pulmonary function tests in patients with amyotrophic lateral sclerosis and the association between these tests and survival. Iran J Neurol. 13, 131–137 (2014).
    1. Fawzi A. A. et al.. Clinicopathologic report of ocular involvement in ALS patients with C9orf72 mutation. Amyotroph Lateral Scler Frontotemporal Degener. 15, 569–580 (2014).
    1. Al-Sarraj S. et al.. p62 positive, TDP-43 negative, neuronal cytoplasmic and intranuclear inclusions in the cerebellum and hippocampus define the pathology of C9orf72-linked FTLD and MND/ALS. Acta Neuropathol. 122, 691–702 (2011).
    1. Brooks B. R., Miller R. G., Swash M. & Munsat T. L. El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord. 1, 293–299 (2000).
    1. Chiu S. J. et al.. Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation. Opt Express. 18, 19413–19428 (2010).
    1. Lee J. Y. et al.. Fully automatic software for retinal thickness in eyes with diabetic macular edema from images acquired by cirrus and spectralis systems. Invest Ophthalmol Vis Sci. 54, 7595–7602 (2013).
    1. Goldhagen B. E. et al.. Retinal atrophy in eyes with resolved papilledema detected by optical coherence tomography. J Neuroophthalmol. 35, 122–126 (2015).
    1. Chiu S. J. et al.. Validated automatic segmentation of AMD pathology including drusen and geographic atrophy in SD-OCT images. Invest Ophthalmol Vis Sci. 53, 53–61 (2012).
    1. Sohn E. H. et al.. Retinal neurodegeneration may precede microvascular changes characteristic of diabetic retinopathy in diabetes mellitus. Proc Natl Acad Sci USA 113, E2655–E2664 (2016).
    1. Abramoff M. D. et al.. Human photoreceptor outer segments shorten during light adaptation. Invest Ophthalmol Vis Sci. 54, 3721–3728 (2013).
    1. El Mendili M. M. et al.. Multi-parametric spinal cord MRI as potential progression marker in amyotrophic lateral sclerosis. PLoS One. 9, e95516 (2014).
    1. Abhinav K. et al.. Use of diffusion spectrum imaging in preliminary longitudinal evaluation of amyotrophic lateral sclerosis: development of an imaging biomarker. Front Hum Neurosci. 8, 270 (2014).
    1. Su X. W. et al.. Biomarker-based predictive models for prognosis in amyotrophic lateral sclerosis. JAMA Neurol. 70, 1505–1511 (2013).
    1. Tallon C., Russell K. A., Sakhalkar S., Andrapallayal N. & Farah M. H. Length-dependent axo-terminal degeneration at the neuromuscular synapses of type II muscle in SOD1 mice. Neuroscience. 312, 179–189 (2016).
    1. Maruyama H. et al.. Mutations of optineurin in amyotrophic lateral sclerosis. Nature. 465, 223–226 (2010).
    1. Sirohi K. et al.. M98K-OPTN induces transferrin receptor degradation and RAB12-mediated autophagic death in retinal ganglion cells. Autophagy. 9, 510–527 (2013).
    1. Ying H. et al.. Induction of autophagy in rats upon overexpression of wild-type and mutant optineurin gene. BMC Cell Biol. 16, 14 (2015).
    1. Bock M. et al.. Impairment of contrast visual acuity as a functional correlate of retinal nerve fibre layer thinning and total macular volume reduction in multiple sclerosis. Br J Ophthalmol. 96, 62–67 (2012).

Source: PubMed

3
Prenumerera