Randomized Cross Over Study Assessing the Efficacy of Non-invasive Stimulation of the Vagus Nerve in Patients With Axial Spondyloarthritis Resistant to Biotherapies: The ESNV-SPA Study Protocol

Eric Azabou, Guillaume Bao, Félicie Costantino, Madalina Jacota, Chanez Lazizi, Lionelle Nkam, Martin Rottman, Anne-Laure Roux, Sylvain Chevallier, Lamiae Grimaldi, Maxime Breban, Eric Azabou, Guillaume Bao, Félicie Costantino, Madalina Jacota, Chanez Lazizi, Lionelle Nkam, Martin Rottman, Anne-Laure Roux, Sylvain Chevallier, Lamiae Grimaldi, Maxime Breban

Abstract

Axial spondyloarthritis (SpA), is a major cause of chronic pain and disability that profoundly alters the quality of life of patients. Nearly half of patients with SpA usually develop drug resistance. Non-pharmacological treatments targeting inflammation are an attractive alternative to drug administration. Vagus nerve stimulation (VNS), by promoting a cholinergic anti-inflammatory reflex holds promise for treating inflammatory disease. Inflammatory reflex signaling, which is enhanced by electrically stimulating the vagus nerve, significantly reduces cytokine production and attenuates disease severity in animal models of endotoxemia, sepsis, colitis, and other preclinical models of inflammatory diseases. It has been proposed that vagal efferent fibers release acetylcholine (Ach), which can interact with α7-subunit-containing nicotinic receptors expressed by tissue macrophages and other immune cells to rapidly inhibit the synthesis/release of pro-inflammatory cytokines such as TNFα, IL-1β, IL-6, and IL-18. External vagal nerve stimulation devices are now available that do not require surgery nor implantation to non-invasively stimulate the vagal nerve. This double-blind randomized cross-over clinical trial aims to study the change in SpA disease activity, according to Assessment in Ankylosing Spondylitis 20 (ASAS20) definition, after 12 weeks of non-invasive VNS treatment vs. non-specific dummy stimulation (control group). One hundred and twenty adult patients with drug resistant SpA, meeting the ASAS classification criteria, will be included in the study. Patients will be randomized into two parallel groups according to a cross over design: either active VNS for 12 weeks, then dummy stimulation for 12 weeks, or dummy stimulation for 12 weeks, then active VNS for 12 weeks. The two stimulation periods will be separated by a 4 weeks wash-out period. A transcutaneous auricular vagus nerve stimulator Tens Eco Plus SCHWA MEDICOTM France will be used in this study. The active VNS stimulation will be applied in the cymba conchae of the left ear upon the auricular branch of the vagus nerve, using low intensity (2-5 mA), once à week, during 1 h. Dummy stimulation will be performed under the same conditions and parameters as active VNS stimulation, but at an irrelevant anatomical site: the left ear lobule. This multicenter study was registered on ClinicalTrials.gov: NCT04286373.

Keywords: axial spondyloarthritis; medical device; neuromodulation; protocol; trial; vagus nerve.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Azabou, Bao, Costantino, Jacota, Lazizi, Nkam, Rottman, Roux, Chevallier, Grimaldi and Breban.

Figures

FIGURE 1
FIGURE 1
Chronogram of the ESNV-SPA study. Patients randomized in group A will receive active VNS stimulation once a week for 12 weeks starting from the first week after inclusion: Treatment period 1 (TP-1), followed by dummy stimulation for 12 weeks: Treatment period 2 (TP-2). Patients randomized to group B will receive the reverse sequence: weekly dummy stimulation for 12 weeks as TP-1, followed by 12 weeks of active VNS as TP-2. The two stimulation periods will be separated by a 4-weeks wash-out period.

References

    1. Anderson J. J., Baron G., van der Heijde D., Felson D. T., Dougados M. (2001). Ankylosing spondylitis assessment group preliminary definition of short-term improvement in ankylosing spondylitis. Arthritis Rheum. 44 1876–1886. 10.1002/1529-0131(200108)44:8<1876::AID-ART326<;2-F
    1. Ben-Menachem E. (2001). Vagus nerve stimulation, side effects, and long-term safety. J. Clin. Neurophysiol. 18 415–418.
    1. Berthoud H. R., Neuhuber W. L. (2000). Functional and chemical anatomy of the afferent vagal system. Auton. Neurosci. 85 1–17. 10.1016/S1566-0702(00)00215-0
    1. Bonaz B., Sinniger V., Pellissier S. (2017). The vagus nerve in the neuro-immune axis: implications in the pathology of the gastrointestinal tract. Front. Immunol. 8:1452. 10.3389/fimmu.2017.01452
    1. Borovikova L. V., Ivanova S., Zhang M., Yang H., Botchkina G. I., Watkins L. R., et al. (2000). Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405 458–462. 10.1038/35013070
    1. Braun J., Sieper J. (2002). Therapy of ankylosing spondylitis and other spondyloarthritides: established medical treatment, anti-TNF-alpha therapy and other novel approaches. Arthritis Res. 4 307–321. 10.1186/ar592
    1. Braun J., Sieper J., Breban M., Collantes-Estevez E., Davis J., Inman R., et al. (2002). Anti-tumour necrosis factor alpha therapy for ankylosing spondylitis: international experience. Ann. Rheum. Dis. 61 (Suppl. 3) iii51–iii60. 10.1136/ard.61.suppl_3.iii51
    1. Cai P. Y., Bodhit A., Derequito R., Ansari S., Abukhalil F., Thenkabail S., et al. (2014). Vagus nerve stimulation in ischemic stroke: old wine in a new bottle. Front. Neurol. 5:107. 10.3389/fneur.2014.00107
    1. Cheng Z., Li-Sha G., Jing-Lin Z., Wen-Wu Z., Xue-Si C., Xing-Xing C., et al. (2014). Protective role of the cholinergic anti-inflammatory pathway in a mouse model of viral myocarditis. PLoS One 9:e112719. 10.1371/journal.pone.0112719
    1. Costantino F., Talpin A., Said-Nahal R., Goldberg M., Henny J., Chiocchia G., et al. (2015). Prevalence of spondyloarthritis in reference to HLA-B27 in the French population: results of the GAZEL cohort. Ann. Rheum. Dis. 74 689–693. 10.1136/annrheumdis-2013-204436
    1. de Koning A., Schoones J. W., van der Heijde D., van Gaalen F. A. (2018). Pathophysiology of axial spondyloarthritis: consensus and controversies. Eur. J. Clin. Invest. 48:e12913. 10.1111/eci.12913
    1. Dougados M., Simon P., Braun J., Burgos-Vargas R., Maksymowych W. P., Sieper J., et al. (2011). ASAS recommendations for collecting, analysing and reporting NSAID intake in clinical trials/epidemiological studies in axial spondyloarthritis. Ann. Rheum. Dis. 70 249–251. 10.1136/ard.2010.133488
    1. Doward L. C., Spoorenberg A., Cook S. A., Whalley D., Helliwell P. S., Kay L. J., et al. (2003). Development of the ASQoL: a quality of life instrument specific to ankylosing spondylitis. Ann. Rheum. Dis. 62 20–26. 10.1136/ard.62.1.20
    1. Fang J., Egorova N., Rong P., Liu J., Hong Y., Fan Y., et al. (2017). Early cortical biomarkers of longitudinal transcutaneous vagus nerve stimulation treatment success in depression. Neuroimage Clin. 14 105–111. 10.1016/j.nicl.2016.12.016
    1. Fournier A., Mondillon L., Dantzer C., Gauchez A. S., Ducros V., Mathieu N., et al. (2018). Emotional overactivity in patients with irritable bowel syndrome. Neurogastroenterol. Motil. 30:e13387. 10.1111/nmo.13387
    1. Fournier A., Mondillon L., Luminet O., Canini F., Mathieu N., Gauchez A. S., et al. (2020). Interoceptive abilities in inflammatory bowel diseases and irritable bowel syndrome. Front. Psychiatry 11:229. 10.3389/fpsyt.2020.00229
    1. Frangos E., Ellrich J., Komisaruk B. R. (2015). Non-invasive access to the vagus nerve central projections via electrical stimulation of the external ear: fMRI evidence in humans. Brain Stimul. 8 624–636. 10.1016/j.brs.2014.11.018
    1. Gaul C., Diener H. C., Silver N., Magis D., Reuter U., Andersson A., et al. (2016). Non-invasive vagus nerve stimulation for PREVention and acute treatment of chronic cluster headache (PREVA): a randomised controlled study. Cephalalgia 36 534–546. 10.1177/0333102415607070
    1. Hu J., Liu S., Ma T. (2021). [Research progress of exploring the treatment of sepsis based on cholinergic anti-inflammatory pathway]. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue 33 122–125. 10.3760/cma.j.cn121430-20200421-00318
    1. Huffman W. J., Subramaniyan S., Rodriguiz R. M., Wetsel W. C., Grill W. M., Terrando N. (2019). Modulation of neuroinflammation and memory dysfunction using percutaneous vagus nerve stimulation in mice. Brain Stimul. 12 19–29. 10.1016/j.brs.2018.10.005
    1. Huston J. M. (2012). The vagus nerve and the inflammatory reflex: wandering on a new treatment paradigm for systemic inflammation and sepsis. Surg. Infect. 13 187–193. 10.1089/sur.2012.126
    1. Huston J. M., Tracey K. J. (2011). The pulse of inflammation: heart rate variability, the cholinergic anti-inflammatory pathway and implications for therapy. J. Intern. Med. 269 45–53. 10.1111/j.1365-2796.2010.02321.x
    1. Jiang Y., Li L., Liu B., Zhang Y., Chen Q., Li C. (2014). Vagus nerve stimulation attenuates cerebral ischemia and reperfusion injury via endogenous cholinergic pathway in rat. PLoS One 9:e102342. 10.1371/journal.pone.0102342
    1. Johnson R. L., Murray S. T., Camacho D. K., Wilson C. G. (2016). Vagal nerve stimulation attenuates IL-6 and TNFalpha expression in respiratory regions of the developing rat brainstem. Respir. Physiol. Neurobiol. 229 1–4. 10.1016/j.resp.2016.03.014
    1. Jones S. D., Porter J., Garrett S. L., Kennedy L. G., Whitelock H., Calin A. (1995). A new scoring system for the bath ankylosing spondylitis metrology index (BASMI). J. Rheumatol. 22:1609.
    1. Kiltz U., van der Heijde D., Boonen A., Cieza A., Stucki G., Khan M. A., et al. (2015). Development of a health index in patients with ankylosing spondylitis (ASAS HI): final result of a global initiative based on the ICF guided by ASAS. Ann. Rheum. Dis. 74 830–835. 10.1136/annrheumdis-2013-203967
    1. Koopman F. A., Chavan S. S., Miljko S., Grazio S., Sokolovic S., Schuurman P. R., et al. (2016). Vagus nerve stimulation inhibits cytokine production and attenuates disease severity in rheumatoid arthritis. Proc. Natl. Acad. Sci. U.S.A. 113 8284–8289. 10.1073/pnas.1605635113
    1. Lange G., Janal M. N., Maniker A., Fitzgibbons J., Fobler M., Cook D., et al. (2011). Safety and efficacy of vagus nerve stimulation in fibromyalgia: a phase I/II proof of concept trial. Pain Med. 12 1406–1413. 10.1111/j.1526-4637.2011.01203.x
    1. Leib C., Katus H. A., Kaya Z. (2013). Cholinergic control of inflammation in cardiovascular diseases. Trends Cardiovasc. Med. 23 46–51. 10.1016/j.tcm.2012.08.010
    1. Lepine J. P., Godchau M., Brun P. (1985). Anxiety and depression in inpatients. Lancet 2 1425–1426. 10.1016/s0140-6736(85)92589-9
    1. Levine Y. A., Koopman F. A., Faltys M., Caravaca A., Bendele A., Zitnik R., et al. (2014). Neurostimulation of the cholinergic anti-inflammatory pathway ameliorates disease in rat collagen-induced arthritis. PLoS One 9:e104530. 10.1371/journal.pone.0104530
    1. Li N., Li Z., Xiang H., Wang X., Zhang X., Li J. (2015). [Protective effects of vagus nerve stimulation on rats with sepsis-associated encephalopathy]. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue 27 509–513. 10.3760/cma.j.issn.2095-4352.2015.06.018
    1. Liu C., Cui G., Zhu M., Kang X., Guo H. (2014). Neuroinflammation in Alzheimer’s disease: chemokines produced by astrocytes and chemokine receptors. Int. J. Clin. Exp. Pathol. 7 8342–8355.
    1. Lopez-Medina C., Dougados M., Collantes-Estevez E., Molto A. (2018). Adherence to recommendations for the use of anti-tumour necrosis factor and its impact over 5 years of follow-up in axial spondyloarthritis. Rheumatology 57 880–890. 10.1093/rheumatology/kex514
    1. Maier S. F., Goehler L. E., Fleshner M., Watkins L. R. (1998). The role of the vagus nerve in cytokine-to-brain communication. Ann. N. Y. Acad. Sci. 840 289–300.
    1. Marshall R., Taylor I., Lahr C., Abell T. L., Espinoza I., Gupta N. K., et al. (2015). Bioelectrical stimulation for the reduction of inflammation in inflammatory bowel disease. Clin. Med. Insights Gastroenterol. 8 55–59. 10.4137/CGast.S31779
    1. Meroni E., Stakenborg N., Gomez-Pinilla P. J., De Hertogh G., Goverse G., Matteoli G., et al. (2018). Functional characterization of oxazolone-induced colitis and survival improvement by vagus nerve stimulation. PLoS One 13:e0197487. 10.1371/journal.pone.0197487
    1. Meroni E., Stakenborg N., Viola M. F., Boeckxstaens G. E. (2019). Intestinal macrophages and their interaction with the enteric nervous system in health and inflammatory bowel disease. Acta Physiol. 225:e13163. 10.1111/apha.13163
    1. Mihaylova S., Killian A., Mayer K., Pullamsetti S. S., Schermuly R., Rosengarten B. (2012). Effects of anti-inflammatory vagus nerve stimulation on the cerebral microcirculation in endotoxinemic rats. J. Neuroinflammation 9:183. 10.1186/1742-2094-9-183
    1. Moisset X., Lanteri-Minet M., Fontaine D. (2020). Neurostimulation methods in the treatment of chronic pain. J. Neural. Transm. 127 673–686. 10.1007/s00702-019-02092-y
    1. Molto A., Gossec L., Meghnathi B., Landewe R. B. M., van der Heijde D., Atagunduz P., et al. (2018). An assessment in spondyloarthritis international society (ASAS)-endorsed definition of clinically important worsening in axial spondyloarthritis based on ASDAS. Ann. Rheum. Dis. 77 124–127. 10.1136/annrheumdis-2017-212178
    1. Morris G. L., III, Gloss D., Buchhalter J., Mack K. J., Nickels K., Harden C. (2013). Evidence-based guideline update: vagus nerve stimulation for the treatment of epilepsy: report of the guideline development subcommittee of the american academy of neurology. Epilepsy Curr. 13 297–303. 10.5698/1535-7597-13.6.297
    1. O’Reardon J. P., Cristancho P., Peshek A. D. (2006). Vagus nerve stimulation (VNS) and treatment of depression: to the brainstem and beyond. Psychiatry 3 54–63.
    1. Pavlov V. A., Tracey K. J. (2012). The vagus nerve and the inflammatory reflex–linking immunity and metabolism. Nat. Rev. Endocrinol. 8 743–754. 10.1038/nrendo.2012.189
    1. Pellissier S., Dantzer C., Mondillon L., Trocme C., Gauchez A. S., Ducros V., et al. (2014). Relationship between vagal tone, cortisol, TNF-alpha, epinephrine and negative affects in Crohn’s disease and irritable bowel syndrome. PLoS One 9:e105328. 10.1371/journal.pone.0105328
    1. Phillips E. C., Croft C. L., Kurbatskaya K., O’Neill M. J., Hutton M. L., Hanger D. P., et al. (2014). Astrocytes and neuroinflammation in Alzheimer’s disease. Biochem. Soc. Trans. 42 1321–1325. 10.1042/BST20140155
    1. Randich A., Gebhart G. F. (1992). Vagal afferent modulation of nociception. Brain Res. Brain Res. Rev. 17 77–99. 10.1016/0165-0173(92)90009-b
    1. Ren C., Li X. H., Wu Y., Dong N., Yao Y. M. (2018). [Influence of vagus nerve on multiple organ function and immune reaction of T lymphocytes in septic rats]. Zhonghua Shao Shang Za Zhi. 34 815–820. 10.3760/cma.j.issn.1009-2587.2018.11.018
    1. Rosas-Ballina M., Ochani M., Parrish W. R., Ochani K., Harris Y. T., Huston J. M., et al. (2008). Splenic nerve is required for cholinergic antiinflammatory pathway control of TNF in endotoxemia. Proc. Natl. Acad. Sci. U.S.A. 105 11008–11013. 10.1073/pnas.0803237105
    1. Rudwaleit M., van der Heijde D., Landewe R., Listing J., Akkoc N., Brandt J., et al. (2009). The development of assessment of spondyloarthritis international society classification criteria for axial spondyloarthritis (part II): validation and final selection. Ann. Rheum. Dis. 68 777–783. 10.1136/ard.2009.108233
    1. Ryvlin P., Gilliam F. G., Nguyen D. K., Colicchio G., Iudice A., Tinuper P., et al. (2014). The long-term effect of vagus nerve stimulation on quality of life in patients with pharmacoresistant focal epilepsy: the PuLsE (Open Prospective Randomized Long-term Effectiveness) trial. Epilepsia 55 893–900. 10.1111/epi.12611
    1. Sieper J., Rudwaleit M., Baraliakos X., Brandt J., Braun J., Burgos-Vargas R., et al. (2009). The assessment of spondyloarthritis international society (ASAS) handbook: a guide to assess spondyloarthritis. Ann. Rheum. Dis. 68 (Suppl. 2) ii1–ii44. 10.1136/ard.2008.104018
    1. Silberstein S. D., Mechtler L. L., Kudrow D. B., Calhoun A. H., McClure C., Saper J. R., et al. (2016). Non-invasive vagus nerve stimulation for the acute treatment of cluster headache: findings from the randomized, double-blind, sham-controlled ACT1 study. Headache 56 1317–1332. 10.1111/head.12896
    1. Smolen J. S., Schols M., Braun J., Dougados M., FitzGerald O., Gladman D. D., et al. (2018). Treating axial spondyloarthritis and peripheral spondyloarthritis, especially psoriatic arthritis, to target: 2017 update of recommendations by an international task force. Ann. Rheum. Dis. 77 3–17. 10.1136/annrheumdis-2017-211734
    1. Steardo L., Jr., Bronzuoli M. R., Iacomino A., Esposito G., Steardo L., Scuderi C. (2015). Does neuroinflammation turn on the flame in Alzheimer’s disease? Focus on astrocytes. Front. Neurosci. 9:259. 10.3389/fnins.2015.00259
    1. Tao X., Lee M. S., Donnelly C. R., Ji R. R. (2020). Neuromodulation, specialized proresolving mediators, and resolution of pain. Neurotherapeutics 17 886–899. 10.1007/s13311-020-00892-9
    1. Taurog J. D., Chhabra A., Colbert R. A. (2016). Ankylosing spondylitis and axial spondyloarthritis. N. Engl. J. Med. 375:1303. 10.1056/NEJMc1609622
    1. Tracey K. J. (2002). The inflammatory reflex. Nature 420 853–859. 10.1038/nature01321
    1. van der Linden S., Valkenburg H. A., Cats A. (1984). Evaluation of diagnostic criteria for ankylosing spondylitis. A proposal for modification of the New York criteria. Arthritis Rheum. 27 361–368. 10.1002/art.1780270401
    1. Wendling D., Lukas C., Prati C., Claudepierre P., Gossec L., Goupille P., et al. (2018). 2017 Update of French Society for Rheumatology (SFR) recommendations about the everyday management of patients with spondyloarthritis. Joint Bone Spine 85 275–284. 10.1016/j.jbspin.2018.01.006
    1. Wendling D., Prati C. (2011). Biologic agents for treating ankylosing spondylitis: beyond TNFalpha antagonists. Joint Bone Spine 78 542–544. 10.1016/j.jbspin.2011.05.023
    1. Wu Y. J., Wang L., Ji C. F., Gu S. F., Yin Q., Zuo J. (2021). The role of alpha7nAChR-mediated cholinergic anti-inflammatory pathway in immune cells. Inflammation 44 821–834. 10.1007/s10753-020-01396-6
    1. Yamakawa K., Matsumoto N., Imamura Y., Muroya T., Yamada T., Nakagawa J., et al. (2013). Electrical vagus nerve stimulation attenuates systemic inflammation and improves survival in a rat heatstroke model. PLoS One 8:e56728. 10.1371/journal.pone.0056728
    1. Zhao Y. X., He W., Jing X. H., Liu J. L., Rong P. J., Ben H., et al. (2012). Transcutaneous auricular vagus nerve stimulation protects endotoxemic rat from lipopolysaccharide-induced inflammation. Evid. Based Complement. Alternat. Med. 2012 627023. 10.1155/2012/627023
    1. Zi S., Li J., Liu L., Liu F. (2020). Cholinergic anti-inflammatory pathway and its role in treatment of sepsis. Zhong Nan Da Xue Xue Bao Yi Xue Ban 45 68–73. 10.11817/j.issn.1672-7347.2020.180651

Source: PubMed

3
Prenumerera