The Enteric Nervous System for Epithelial Researchers: Basic Anatomy, Techniques, and Interactions With the Epithelium

Kathleen T Walsh, Anne E Zemper, Kathleen T Walsh, Anne E Zemper

Abstract

The intestinal epithelium does not function in isolation, but interacts with many components including the Enteric Nervous System (ENS). Understanding ENS and intestinal epithelium interactions requires multidisciplinary approaches to uncover cells involved, mechanisms used, and the ultimate influence on intestinal physiology. This review is intended to serve as a reference for epithelial biologists interested in studying these interactions. With this in mind, this review aims to summarize the basic anatomy of the epithelium and ENS, mechanisms by which they interact, and techniques used to study these interactions. We highlight in vitro, ex vivo and in vivo techniques. Additionally, ENS influence on epithelial proliferation and gene expression within stem and differentiated cells as well as gastrointestinal cancer are discussed.

Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.

Figures

Figure 1
Figure 1
Anatomy of intestinal epithelium, ENS, and intestinal muscle layers. (A) Cartoon depiction of SI epithelium depicting villi with differentiated cell types and crypts with progenitor cell niche located above the ENS and musculature of intestine. (B) Cartoon depicting of colonic epithelium depicting differentiated cells and progenitors within crypts located above the ENS and musculature of intestine. (A, B) Mucosal glia located within mucosa, intraganglionic glia are located adjacent to neuronal cell bodies within ganglia, and intramuscular glia are located along nerves within muscle layers. Yellow nerves represent intrinsic nerves from submucosal plexus, orange nerves represent intrinsic nerves from myenteric plexus, and blue nerves represent extrinsic innervation into intestine. The legend is located below the graphic. (C) Immunofluorescent image of colonic epithelium. Epithelial cells (DAPI, blue) are located above submucosal and myenteric neurons. Neuronal nuclei marked with HuC/D (green) and neuronal projections marked with PGP9.5 (magenta). Note that the staining at the top of the crypts is background staining. (D) Longitudinal view of myenteric plexus depicting enteric neuron morphology using same markers as described in panel C. Circle represents one ganglia (yellow dashed circle). (C, D) Scale bar = 50 um. ICC, interstitial cells of Cajal.
Figure 2
Figure 2
Mechanisms of epithelial-ENS interactions and current techniques. (A) Paracrine model of neuron-epithelial cell communication. Diffusion of molecules between intestinal epithelial cells and enteric neurons may result in communication in both directions. Release of molecules (yellow or blue circles) from one cell can bind to receptors (red or magenta ovals) on the signal-receiving cell resulting in downstream signaling. (B) Depiction of direct synaptic connections between neurons and epithelial neuropod cells. Expression of synaptic proteins between the neuron and neuropod cell allows for direct communication between the two cells. As with diffusion, expression of hormones or neurotransmitters (yellow or blue circles) from the presynaptic cell binds to receptors (red or magenta ovals) on the opposing postsynaptic cell. Expression of pre- and postsynaptic proteins has been shown with this model. (C–H) Approaches used to study epithelial-ENS interactions using in vitro, ex vivo, or in vivo techniques: (C) optogenetics to manipulate ENS activity in vivo; (D) abdominal window to visualize intestinal activity in vivo in anesthetized animals; and (E) Ussing chamber to study secretion, signaling, or barrier function with ENS cultured on basal side. (The Ussing chamber can be an ex vivo or in vitro technique depending on type of epithelial tissue or cell monolayer used); (F) intestinal motility assay measures propagation of artificial fecal pellet in ex vivo setting; (G) co-culture of monolayers; or (H) organoids allowing for measurement of in vitro gene expression changes or barrier permeability with or without ENS influence on epithelium.

References

    1. Barker N., van Es J.H., Kuipers J., Kujala P., van den Born M., Cozijnsen M., Haegebarth A., Korving J., Begthel H., Peters P.J., Clevers H. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature. 2007;449:1003–1007.
    1. Tian H., Biehs B., Warming S., Leong K.G., Rangell L., Klein O.D., de Sauvage F.J. A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature. 2011;478:255–259.
    1. Sato T., van Es J.H., Snippert H.J., Stange D.E., Vries R.G., van den Born M., Barker N., Shroyer N.F., van de Wetering M., Clevers H. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature. 2011;469:415–418.
    1. Roth S., Franken P., Sacchetti A., Kremer A., Anderson K., Sansom O. Fodde R Paneth cells in intestinal homeostasis and tissue injury. PLoS One. 2012;7:e38965.
    1. Fre S., Huyghe M., Mourikis P., Robine S., Louvard D., Artavanis-Tsakonas S. Notch signals control the fate of immature progenitor cells in the intestine. Nature. 2005;435:964–968.
    1. Yang Q., Bermingham N.A., Finegold M.J., Zoghbi H.Y. Requirement of Math1 for secretory cell lineage commitment in the mouse intestine. Science. 2001;294:2155–2158.
    1. Latorre R., Sternini C., De Giorgio R., Greenwood-Van Meerveld B. Enteroendocrine cells: a review of their role in brain-gut communication. Neurogastroenterol Motil. 2016;28:620–630.
    1. Middelhoff M., Westphalen C.B., Hayakawa Y., Yan K.S., Gershon M.D., Wang T.C., Quante M. Dclk1-expressing tuft cells: critical modulators of the intestinal niche? Am J Physiol Gastrointest Liver Physiol. 2017;313:G285–G299.
    1. Furness J.B. The enteric nervous system and neurogastroenterology. Nat Rev Gastroenterol Hepatol. 2012;9:286–294.
    1. Poole D.P., Furness J.B. Enteric nervous system structure and neurochemistry related to function and neuropathology. Physiol Gastrointest Tract. 2012:557–581.
    1. Gulbransen B.D., Sharkey K.A. Novel functional roles for enteric glia in the gastrointestinal tract. Nat Rev Gastroenterol Hepatol. 2012;9:625–632.
    1. Costa M., Brookes S.J., Hennig G.W. Anatomy and physiology of the enteric nervous system. Gut. 2000;47(suppl 4):iv15–iv19. discussion iv26.
    1. Kondo J., Powell A.E., Wang Y., Musser M.A., Southard-Smith E.M., Franklin J.L., Coffey R.J. LRIG1 regulates ontogeny of smooth muscle−derived subsets of interstitial cells of Cajal in mice. Gastroenterology. 2015;149:407–419.e8.
    1. Owens B.M.J., Simmons A. Intestinal stromal cells in mucosal immunity and homeostasis. Mucosal Immunol. 2013;6:224–234.
    1. Sailaja B.S., He X.C., Li L. The regulatory niche of intestinal stem cells. J Physiol. 2016;594:4827–4836.
    1. Brookes S.J.H., Spencer N.J., Costa M., Zagorodnyuk V.P. Extrinsic primary afferent signalling in the gut. Nat Rev Gastroenterol Hepatol. 2013;10:286–296.
    1. Blackshaw L.A., Brookes S.J.H., Grundy D., Schemann M. Sensory Transmission in the gastrointestinal tract. Neurogastroenterol Motil. 2007;19:1–19.
    1. Uesaka T., Young H.M., Pachnis V., Enomoto H. Development of the intrinsic and extrinsic innervation of the gut. Dev Biol. 2016;417:158–167.
    1. Singh B., Coffey R.J. Trafficking of epidermal growth factor receptor ligands in polarized epithelial cells. Annu Rev Physiol. 2014;76:275–300.
    1. Farin H.F., Jordens I., Mosa M.H., Basak O., Korving J., Tauriello D.V.F., de Punder K., Angers S., Peters P.J., Maurice M.M., Clevers H. Visualization of a short-range Wnt gradient in the intestinal stem-cell niche. Nature. 2016;530:340–343.
    1. van Niel G., D’Angelo G., Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19:213–228.
    1. Zappulli V., Friis K.P., Fitzpatrick Z., Maguire C.A., Breakefield X.O. Extracellular vesicles and intercellular communication within the nervous system. J Clin Invest. 2016;126:1198–1207.
    1. Budnik V., Ruiz-Cañada C., Wendler F. Extracellular vesicles round off communication in the nervous system. Nat Rev Neurosci. 2016;17:160–172.
    1. Bohórquez D.V., Shahid R.A., Erdmann A., Kreger A.M., Wang Y., Calakos N., Wang F., Liddle R.A. Neuroepithelial circuit formed by innervation of sensory enteroendocrine cells. J Clin Invest. 2015;125:782–786.
    1. Kaelberer M.M., Buchanan K.L., Klein M.E., Barth B.B., Montoya M.M., Shen X., Bohórquez D.V. A gut-brain neural circuit for nutrient sensory transduction. Science. 2018;361:eaat5236.
    1. van der Flier L.G., Clevers H. Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu Rev Physiol. 2009;71:241–260.
    1. Qu Z.-D., Thacker M., Castelucci P., Bagyánszki M., Epstein M.L., Furness J.B. Immunohistochemical analysis of neuron types in the mouse small intestine. Cell Tissue Res. 2008;334:147–161.
    1. Furness J.B. Blackwell; Oxford, England: 2006. The Enteric Nervous System.
    1. Lasrado R., Boesmans W., Kleinjung J., Pin C., Bell D., Bhaw L., McCallum S., Zong H., Luo L., Clevers H., Vanden Berghe P., Pachnis V. Lineage-dependent spatial and functional organization of the mammalian enteric nervous system. Science. 2017;356:722–726.
    1. Boesmans W., Lasrado R., Vanden Berghe P., Pachnis V. Heterogeneity and phenotypic plasticity of glial cells in the mammalian enteric nervous system. Glia. 2015;63:229–241.
    1. Wattchow D.A., Brookes S.J.H., Costa M. The morphology and projections of retrogradely labeled myenteric neurons in the human intestine. Gastroenterology. 1995;109:866–875.
    1. Liou A.P., Sei Y., Zhao X., Feng J., Lu X., Thomas C., Pechhold S., Raybould H.E., Wank S.A. The extracellular calcium-sensing receptor is required for cholecystokinin secretion in response to l -phenylalanine in acutely isolated intestinal I cells. Am J Physiol Liver Physiol. 2011;300:G538–G546.
    1. Bellono N.W., Bayrer J.R., Leitch D.B., Castro J., Zhang C., O’Donnell T.A., Brierley S.M., Ingraham H.A., Julius D. Enterochromaffin cells are gut chemosensors that couple to sensory neural pathways. Cell. 2017;170:185–198.e16.
    1. Rakhilin N., Barth B., Choi J., Muñoz N.L., Kulkarni S., Jones J.S., Small D.M., Cheng Y.-T., Cao Y., LaVinka C., Kan E., Dong X., Spencer M., Pasricha P., Nishimura N., Shen X. Simultaneous optical and electrical in vivo analysis of the enteric nervous system. Nat Commun. 2016;7:11800.
    1. Makadia P.A., Najjar S.A., Saloman J.L., Adelman P., Feng B., Margiotta J.F., Albers K.M., Davis B.M. Optogenetic activation of colon epithelium of the mouse produces high-frequency bursting in extrinsic colon afferents and engages visceromotor responses. J Neurosci. 2018;38:5788–5798.
    1. Orzekowsky-Schroeder R., Klinger A., Martensen B., Blessenohl M., Gebert A., Vogel A., Hüttmann G. In vivo spectral imaging of different cell types in the small intestine by two-photon excited autofluorescence. J Biomed Opt. 2011;16:116025.
    1. Bao H., Boussioutas A., Reynolds J., Russell S., Gu M. Imaging of goblet cells as a marker for intestinal metaplasia of the stomach by one-photon and two-photon fluorescence endomicroscopy. J Biomed Opt. 2009;14:064031.
    1. Goto K., Kato G., Kawahara I., Luo Y., Obata K., Misawa H., Ishikawa T., Kuniyasu H., Nabekura J., Takaki M. In vivo imaging of enteric neurogenesis in the deep tissue of mouse small intestine. PLoS One. 2013;8:e54814.
    1. Grubišić V., Gulbransen B.D. Enteric glial activity regulates secretomotor function in the mouse colon but does not acutely affect gut permeability. J Physiol. 2017;595:3409–3424.
    1. Hoffman J.M., Brooks E.M., Mawe G.M. Gastrointestinal motility monitor (GIMM) J Vis Exp. 2010;46:2435.
    1. Swaminathan M., Hill-Yardin E., Ellis M., Zygorodimos M., Johnston L.A., Gwynne R.M., Bornstein J.C. Video imaging and spatiotemporal maps to analyze gastrointestinal motility in mice. J Vis Exp. 2016;108:e53828.
    1. Savidge T.C., Newman P., Pothoulakis C., Ruhl A., Neunlist M., Bourreille A., Hurst R., Sofroniew M.V. Enteric glia regulate intestinal barrier function and inflammation via release of S-nitrosoglutathione. Gastroenterology. 2007;132:1344–1358.
    1. Puzan M., Hosic S., Ghio C., Koppes A. Enteric nervous system regulation of intestinal stem cell differentiation and epithelial monolayer function. Sci Rep. 2018;8:6313.
    1. Van Landeghem L., Mahé M.M., Teusan R., Léger J., Guisle I., Houlgatte R., Neunlist M. Regulation of intestinal epithelial cells transcriptome by enteric glial cells: impact on intestinal epithelial barrier functions. BMC Genomics. 2009;10:507.
    1. Neunlist M., Aubert P., Bonnaud S., Van Landeghem L., Coron E., Wedel T., Naveilhan P., Ruhl A., Lardeux B., Savidge T., Paris F., Galmiche J.P. Enteric glia inhibit intestinal epithelial cell proliferation partly through a TGF-beta1-dependent pathway. Am J Physiol Liver Physiol. 2007;292:G231–G241.
    1. Sato T., Vries R.G., Snippert H.J., van de Wetering M., Barker N., Stange D.E., van Es J.H., Abo A., Kujala P., Peters P.J., Clevers H. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 2009;459:262–265.
    1. Sato T. Clevers H Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications. Science. 2013;340:1190–1194.
    1. Anitha M., Joseph I., Ding X., Torre E.R., Sawchuk M.A., Mwangi S., Hochman S., Sitaraman S.V., Anania F., Srinivasan S. Characterization of fetal and postnatal enteric neuronal cell lines with improvement in intestinal neural function. Gastroenterology. 2008;134:1424–1435.
    1. Nagy N., Goldstein A.M. Enteric nervous system development: a crest cell’s journey from neural tube to colon. Semin Cell Dev Biol. 2017;66:94–106.
    1. Workman M.J., Mahe M.M., Trisno S., Poling H.M., Watson C.L., Sundaram N., Chang C.-F., Schiesser J., Aubert P., Stanley E.G., Elefanty A.G., Miyaoka Y., Mandegar M.A., Conklin B.R., Neunlist M., Brugmann S.A., Helmrath M.A., Wells J.M. Engineered human pluripotent-stem-cell-derived intestinal tissues with a functional enteric nervous system. Nat Med. 2017;23:49–59.
    1. Howitt M.R., Lavoie S., Michaud M., Blum A.M., Tran S.V., Weinstock J.V., Gallini C.A., Redding K., Margolskee R.F., Osborne L.C., Artis D., Garrett W.S. Tuft Cells, Taste-chemosensory cells, orchestrate parasite type 2 immunity in the gut. Science. 2016;351:1329–1333.
    1. Worthington J.J. The intestinal immunoendocrine axis: novel cross-talk between enteroendocrine cells and the immune system during infection and inflammatory disease. Biochem Soc Trans. 2015;43:727.
    1. Gross E.R., Gershon M.D., Margolis K.G., Gertsberg Z.V., Cowles R.A., Cowles R.A. Neuronal serotonin regulates growth of the intestinal mucosa in mice. Gastroenterology. 2012;143:408–417.e2.
    1. Specian R.D., Neutra M.R. Mechanism of rapid mucus secretion in goblet cells stimulated by acetylcholine. J Cell Biol. 1980;85:626–640.
    1. Westphalen C.B., Asfaha S., Hayakawa Y., Takemoto Y., Lukin D.J., Nuber A.H., Brandtner A., Setlik W., Remotti H., Muley A., Chen X., May R., Houchen C.W., Fox J.G., Gershon M.D., Qante M., Wang T.C. Long-lived intestinal tuft cells serve as colon cancer–initiating cells. J Clin Invest. 2014;124:1283–1295.
    1. Greig C.J., Cowles R.A. Muscarinic acetylcholine receptors participate in small intestinal mucosal homeostasis. J Pediatr Surg. 2017;52:1031–1034.
    1. Davis E.A., Zhou W., Dailey M.J. Evidence for a direct effect of the autonomic nervous system on intestinal epithelial stem cell proliferation. Physiol Rep. 2018;6:e13745.
    1. Zhao C.-M., Hayakawa Y., Kodama Y., Muthupalani S., Westphalen C.B., Andersen G.T., Flatberg A., Johannessen H., Friedman R.A., Renz B.W., Sandvik A.K., Beisvag V., Tomita H., Hara A., Quante M., Li Z., Gershon M.D., Kaneko K., Fox J.G., Wang T.C., Chen D. Denervation suppresses gastric tumorigenesis. Sci Transl Med. 2014;6:250ra115.
    1. Lachat J.-J., Goncalves R.P. Influence of autonomic denervation upon the kinetics of the ileal epithelium of the rat. Cell Tissue Res. 1978;192:285–297.
    1. Li Z., Caron M.G., Blakely R.D., Margolis K.G., Gershon M.D. Dependence of serotonergic and other nonadrenergic enteric neurons on norepinephrine transporter expression. J Neurosci. 2010;30:16730–16740.
    1. Nezami B.G., Srinivasan S. Enteric nervous system in the small intestine: pathophysiology and clinical implications. Curr Gastroenterol Rep. 2010;12:358–365.
    1. Mittal R., Debs L.H., Patel A.P., Nguyen D., Patel K., O’Connor G., Grati M., Mittal J., Yan D., Eshraghi A.A., Deo S.K., Daunert S., Liu X.Z. Neurotransmitters: the critical modulators regulating gut-brain axis. J Cell Physiol. 2017;232:2359–2372.
    1. Berlioz F., Maoret J.J., Paris H., Laburthe M., Farinotti R., Rozé C. Alpha(2)-adrenergic receptors stimulate oligopeptide transport in a human intestinal cell line. J Pharmacol Exp Ther. 2000;294:466–472.
    1. Sternini C., Anselmi L., Rozengurt E. Enteroendocrine cells: a site of “taste” in gastrointestinal chemosensing. Curr Opin Endocrinol Diabetes Obes. 2008;15:73–78.
    1. Rindi G., Leiter A.B., Kopin A.S., Bordi C., Solcia E. The “normal” endocrine cell of the gut: changing concepts and new evidences. Ann N Y Acad Sci. 2004;1014:1–12.
    1. Wang F., Knutson K., Alcaino C., Linden D.R., Gibbons S.J., Kashyap P., Grover M., Oeckler R., Gottlieb P.A., Li H.J., Leter A.B., Farrugia G., Beyder A. Mechanosensitive ion channel Piezo2 is important for enterochromaffin cell response to mechanical forces. J Physiol. 2017;595:79–91.
    1. Alcaino C., Knutson K.R., Treichel A.J., Yildiz G., Strege P.R., Linden D.R., Li J.H., Leiter A.B., Szurszewski J.H., Farrugia G., Beyder A. A population of gut epithelial enterochromaffin cells is mechanosensitive and requires Piezo2 to convert force into serotonin release. Proc Natl Acad Sci U S A. 2018;115:E7632–E7641.
    1. Beyder A In pursuit of the epithelial mechanosensitivity mechanisms. Front Endocrinol. 2019;9:804.
    1. Konturek S.J., Konturek J.W., Pawlik T., Brzozowski T. Brain-gut axis and its role in the control of food intake. J Physiol Pharmacol. 2004;55:137–154.
    1. Small C.J., Bloom S.R. Gut hormones and the control of appetite. Trends Endocrinol Metab. 2004;15:259–263.
    1. Nozawa K., Kawabata-Shoda E., Doihara H., Kojima R., Okada H., Mochizuki S., Sano Y., Inamura K., Matsushime H., Koizumi T., Yokoyama T., Ito H. TRPA1 regulates gastrointestinal motility through serotonin release from enterochromaffin cells. Proc Natl Acad Sci U S A. 2009;106:3408–3413.
    1. Capasso R., Aviello G., Romano B., Borrelli F., De Petrocellis L., Di Marzo V., Izzo A.A. Modulation of mouse gastrointestinal motility by allyl isothiocyanate, a constituent of cruciferous vegetables (Brassicaceae): evidence for TRPA1-independent effects. Br J Pharmacol. 2012;165:1966–1977.
    1. Heredia D.J., Gershon M.D., Koh S.D., Corrigan R.D., Okamoto T., Smith T.K. Important role of mucosal serotonin in colonic propulsion and peristaltic reflexes: in vitro analyses in mice lacking tryptophan hydroxylase 1. J Physiol. 2013;591:5939–5957.
    1. Spencer N.J., Sia T.C., Brookes S.J., Costa M., Keating D.J. CrossTalk opposing view: 5-HT is not necessary for peristalsis. J Physiol. 2015;593:3229–3231.
    1. Smith T.K., Gershon M.D. CrossTalk proposal: 5-HT is necessary for peristalsis. J Physiol. 2015;593:3225–3227.
    1. Gerbe F., van Es J.H., Makrini L., Brulin B., Mellitzer G., Robine S., Romagnolo B., Shroyer N.F., Bourgaux J.-F., Pignodel C., Clevers H., Jay P. Distinct ATOH1 and Neurog3 requirements define tuft cells as a new secretory cell type in the intestinal epithelium. J Cell Biol. 2011;192:767–780.
    1. Schütz B., Jurastow I., Bader S., Ringer C., von Engelhardt J., Chubanov V., Gudermann T., Diener M., Kummer W., Krasteva-Christ G., Weihe E. Chemical coding and chemosensory properties of cholinergic brush cells in the mouse gastrointestinal and biliary tract. Front Physiol. 2015;6:87.
    1. Bush T.G., Savidge T.C., Freeman T.C., Cox H.J., Campbell E.A., Mucke L., Johnson M.H., Sofroniew M.V. Fulminant jejuno-ileitis following ablation of enteric glia in adult transgenic mice. Cell. 1998;93:189–201.
    1. Rao M., Rastelli D., Dong L., Chiu S., Setlik W., Gershon M.D., Corfas G. Enteric glia regulate gastrointestinal motility but are not required for maintenance of the epithelium in mice. Gastroenterology. 2017;153:1068–1081.e7.
    1. Van Landeghem L., Chevalier J., Mahé M.M., Wedel T., Urvil P., Derkinderen P., Savidge T., Neunlist M. Enteric glia promote intestinal mucosal healing via activation of focal adhesion kinase and release of ProEGF. Am J Physiol Liver Physiol. 2011;300:G976–G987.
    1. Ruhl A., Trotter J., Stremmel W. Isolation of enteric glia and establishment of transformed enteroglial cell lines from the myenteric plexus of adult rat. Neurogastroenterol Motil. 2001;13:95–106.
    1. Bahmanyar S., Ye W., Dickman P.W., Nyrén O. Long-term risk of gastric cancer by subsite in operated and unoperated patients hospitalized for peptic ulcer. Am J Gastroenterol. 2007;102:1185–1191.
    1. Lundegardh G., Ekbom A., McLaughlin J.K. Gastric cancer risk after vagotomy. Gut. 1994;35:946–949.
    1. Hayakawa Y., Sakitani K., Konishi M., Asfaha S., Niikura R., Tomita H., Renz B.W., Tailor Y., Macchini M., Middelhoff M., Jiang Z., Tanaka T., Dubeykovskaya Z.A., Kim W., Chen X., Urbanska A.M., Nagar K., Westphalen C.B., Quante M., Lin C.S., Gershon M.D., Hara A., Zhao C.M., Chen D., Worthley D.L., Koike K., Wang T.C. Nerve growth factor promotes gastric tumorigenesis through aberrant cholinergic signaling. Cancer Cell. 2017;31:21–34.
    1. Duchalais E., Guilluy C., Nedellec S., Touvron M., Bessard A., Touchefeu Y., Bossard C., Boudin H., Louarn G., Neunlist M., Van Landeghem L. Colorectal cancer cells adhere to and migrate along the neurons of the enteric nervous system. Cell Mol Gastroenterol Hepatol. 2018;5:31–49.
    1. Heuckeroth R.O. Hirschsprung disease — integrating basic science and clinical medicine to improve outcomes. Nat Rev Gastroenterol Hepatol. 2018;15:152–167.

Source: PubMed

3
Prenumerera